x, y માટે ઉકેલો
x=1
y=2
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4x+2y=8,16x-y=14
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x+2y=8
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=-2y+8
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{4}\left(-2y+8\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{1}{2}y+2
-2y+8 ને \frac{1}{4} વાર ગુણાકાર કરો.
16\left(-\frac{1}{2}y+2\right)-y=14
અન્ય સમીકરણ, 16x-y=14 માં x માટે -\frac{y}{2}+2 નો પ્રતિસ્થાપન કરો.
-8y+32-y=14
-\frac{y}{2}+2 ને 16 વાર ગુણાકાર કરો.
-9y+32=14
-y માં -8y ઍડ કરો.
-9y=-18
સમીકરણની બન્ને બાજુથી 32 નો ઘટાડો કરો.
y=2
બન્ને બાજુનો -9 થી ભાગાકાર કરો.
x=-\frac{1}{2}\times 2+2
x=-\frac{1}{2}y+2માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-1+2
2 ને -\frac{1}{2} વાર ગુણાકાર કરો.
x=1
-1 માં 2 ઍડ કરો.
x=1,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x+2y=8,16x-y=14
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&2\\16&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\14\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}4&2\\16&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
\left(\begin{matrix}4&2\\16&-1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-2\times 16}&-\frac{2}{4\left(-1\right)-2\times 16}\\-\frac{16}{4\left(-1\right)-2\times 16}&\frac{4}{4\left(-1\right)-2\times 16}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{36}&\frac{1}{18}\\\frac{4}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{36}\times 8+\frac{1}{18}\times 14\\\frac{4}{9}\times 8-\frac{1}{9}\times 14\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
અંકગણિતીય કરો.
x=1,y=2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x+2y=8,16x-y=14
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
16\times 4x+16\times 2y=16\times 8,4\times 16x+4\left(-1\right)y=4\times 14
4x અને 16x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 16 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
64x+32y=128,64x-4y=56
સરળ બનાવો.
64x-64x+32y+4y=128-56
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 64x+32y=128માંથી 64x-4y=56 ને ઘટાડો.
32y+4y=128-56
-64x માં 64x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 64x અને -64x ને વિભાજિત કરો.
36y=128-56
4y માં 32y ઍડ કરો.
36y=72
-56 માં 128 ઍડ કરો.
y=2
બન્ને બાજુનો 36 થી ભાગાકાર કરો.
16x-2=14
16x-y=14માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
16x=16
સમીકરણની બન્ને બાજુ 2 ઍડ કરો.
x=1
બન્ને બાજુનો 16 થી ભાગાકાર કરો.
x=1,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}