x, y માટે ઉકેલો
x=\frac{3}{8}=0.375
y = \frac{31}{8} = 3\frac{7}{8} = 3.875
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
3x+y=5,-2x+2y=7
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+y=5
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-y+5
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-y+5\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{1}{3}y+\frac{5}{3}
-y+5 ને \frac{1}{3} વાર ગુણાકાર કરો.
-2\left(-\frac{1}{3}y+\frac{5}{3}\right)+2y=7
અન્ય સમીકરણ, -2x+2y=7 માં x માટે \frac{-y+5}{3} નો પ્રતિસ્થાપન કરો.
\frac{2}{3}y-\frac{10}{3}+2y=7
\frac{-y+5}{3} ને -2 વાર ગુણાકાર કરો.
\frac{8}{3}y-\frac{10}{3}=7
2y માં \frac{2y}{3} ઍડ કરો.
\frac{8}{3}y=\frac{31}{3}
સમીકરણની બન્ને બાજુ \frac{10}{3} ઍડ કરો.
y=\frac{31}{8}
સમીકરણની બન્ને બાજુનો \frac{8}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{1}{3}\times \frac{31}{8}+\frac{5}{3}
x=-\frac{1}{3}y+\frac{5}{3}માં y માટે \frac{31}{8} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{31}{24}+\frac{5}{3}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{1}{3} નો \frac{31}{8} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{3}{8}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{31}{24} માં \frac{5}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{3}{8},y=\frac{31}{8}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+y=5,-2x+2y=7
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&1\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}3&1\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}3&1\\-2&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-2&2\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\right)}&-\frac{1}{3\times 2-\left(-2\right)}\\-\frac{-2}{3\times 2-\left(-2\right)}&\frac{3}{3\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{8}\\\frac{1}{4}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5-\frac{1}{8}\times 7\\\frac{1}{4}\times 5+\frac{3}{8}\times 7\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\\\frac{31}{8}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{3}{8},y=\frac{31}{8}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+y=5,-2x+2y=7
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-2\times 3x-2y=-2\times 5,3\left(-2\right)x+3\times 2y=3\times 7
3x અને -2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
-6x-2y=-10,-6x+6y=21
સરળ બનાવો.
-6x+6x-2y-6y=-10-21
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -6x-2y=-10માંથી -6x+6y=21 ને ઘટાડો.
-2y-6y=-10-21
6x માં -6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -6x અને 6x ને વિભાજિત કરો.
-8y=-10-21
-6y માં -2y ઍડ કરો.
-8y=-31
-21 માં -10 ઍડ કરો.
y=\frac{31}{8}
બન્ને બાજુનો -8 થી ભાગાકાર કરો.
-2x+2\times \frac{31}{8}=7
-2x+2y=7માં y માટે \frac{31}{8} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-2x+\frac{31}{4}=7
\frac{31}{8} ને 2 વાર ગુણાકાર કરો.
-2x=-\frac{3}{4}
સમીકરણની બન્ને બાજુથી \frac{31}{4} નો ઘટાડો કરો.
x=\frac{3}{8}
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
x=\frac{3}{8},y=\frac{31}{8}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}