x, y માટે ઉકેલો
x=1
y=-1
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
-5x+3y=-8,-x-3y=2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-5x+3y=-8
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-5x=-3y-8
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=-\frac{1}{5}\left(-3y-8\right)
બન્ને બાજુનો -5 થી ભાગાકાર કરો.
x=\frac{3}{5}y+\frac{8}{5}
-3y-8 ને -\frac{1}{5} વાર ગુણાકાર કરો.
-\left(\frac{3}{5}y+\frac{8}{5}\right)-3y=2
અન્ય સમીકરણ, -x-3y=2 માં x માટે \frac{3y+8}{5} નો પ્રતિસ્થાપન કરો.
-\frac{3}{5}y-\frac{8}{5}-3y=2
\frac{3y+8}{5} ને -1 વાર ગુણાકાર કરો.
-\frac{18}{5}y-\frac{8}{5}=2
-3y માં -\frac{3y}{5} ઍડ કરો.
-\frac{18}{5}y=\frac{18}{5}
સમીકરણની બન્ને બાજુ \frac{8}{5} ઍડ કરો.
y=-1
સમીકરણની બન્ને બાજુનો -\frac{18}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{3}{5}\left(-1\right)+\frac{8}{5}
x=\frac{3}{5}y+\frac{8}{5}માં y માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-3+8}{5}
-1 ને \frac{3}{5} વાર ગુણાકાર કરો.
x=1
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{3}{5} માં \frac{8}{5} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=1,y=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-5x+3y=-8,-x-3y=2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-5\left(-3\right)-3\left(-1\right)}&-\frac{3}{-5\left(-3\right)-3\left(-1\right)}\\-\frac{-1}{-5\left(-3\right)-3\left(-1\right)}&-\frac{5}{-5\left(-3\right)-3\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&-\frac{1}{6}\\\frac{1}{18}&-\frac{5}{18}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\left(-8\right)-\frac{1}{6}\times 2\\\frac{1}{18}\left(-8\right)-\frac{5}{18}\times 2\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
અંકગણિતીય કરો.
x=1,y=-1
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-5x+3y=-8,-x-3y=2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-\left(-5\right)x-3y=-\left(-8\right),-5\left(-1\right)x-5\left(-3\right)y=-5\times 2
-5x અને -x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો -5 સાથે ગુણાકાર કરો.
5x-3y=8,5x+15y=-10
સરળ બનાવો.
5x-5x-3y-15y=8+10
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 5x-3y=8માંથી 5x+15y=-10 ને ઘટાડો.
-3y-15y=8+10
-5x માં 5x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 5x અને -5x ને વિભાજિત કરો.
-18y=8+10
-15y માં -3y ઍડ કરો.
-18y=18
10 માં 8 ઍડ કરો.
y=-1
બન્ને બાજુનો -18 થી ભાગાકાર કરો.
-x-3\left(-1\right)=2
-x-3y=2માં y માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-x+3=2
-1 ને -3 વાર ગુણાકાર કરો.
-x=-1
સમીકરણની બન્ને બાજુથી 3 નો ઘટાડો કરો.
x=1
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x=1,y=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}