x, y માટે ઉકેલો
x=0
y=2
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
\frac{1}{10}x+\frac{1}{2}y=1
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
\frac{1}{10}x=-\frac{1}{2}y+1
સમીકરણની બન્ને બાજુથી \frac{y}{2} નો ઘટાડો કરો.
x=10\left(-\frac{1}{2}y+1\right)
બન્ને બાજુનો 10 દ્વારા ગુણાકાર કરો.
x=-5y+10
-\frac{y}{2}+1 ને 10 વાર ગુણાકાર કરો.
2\left(-5y+10\right)-10y=-20
અન્ય સમીકરણ, 2x-10y=-20 માં x માટે -5y+10 નો પ્રતિસ્થાપન કરો.
-10y+20-10y=-20
-5y+10 ને 2 વાર ગુણાકાર કરો.
-20y+20=-20
-10y માં -10y ઍડ કરો.
-20y=-40
સમીકરણની બન્ને બાજુથી 20 નો ઘટાડો કરો.
y=2
બન્ને બાજુનો -20 થી ભાગાકાર કરો.
x=-5\times 2+10
x=-5y+10માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-10+10
2 ને -5 વાર ગુણાકાર કરો.
x=0
-10 માં 10 ઍડ કરો.
x=0,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-20\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{10}&\frac{1}{2}\\2&-10\end{matrix}\right))\left(\begin{matrix}1\\-20\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}&-\frac{\frac{1}{2}}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}\\-\frac{2}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}&\frac{\frac{1}{10}}{\frac{1}{10}\left(-10\right)-\frac{1}{2}\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-20\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&\frac{1}{4}\\1&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}1\\-20\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5+\frac{1}{4}\left(-20\right)\\1-\frac{1}{20}\left(-20\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
અંકગણિતીય કરો.
x=0,y=2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
\frac{1}{10}x+\frac{1}{2}y=1,2x-10y=-20
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times \frac{1}{10}x+2\times \frac{1}{2}y=2,\frac{1}{10}\times 2x+\frac{1}{10}\left(-10\right)y=\frac{1}{10}\left(-20\right)
\frac{x}{10} અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો \frac{1}{10} સાથે ગુણાકાર કરો.
\frac{1}{5}x+y=2,\frac{1}{5}x-y=-2
સરળ બનાવો.
\frac{1}{5}x-\frac{1}{5}x+y+y=2+2
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી \frac{1}{5}x+y=2માંથી \frac{1}{5}x-y=-2 ને ઘટાડો.
y+y=2+2
-\frac{x}{5} માં \frac{x}{5} ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો \frac{x}{5} અને -\frac{x}{5} ને વિભાજિત કરો.
2y=2+2
y માં y ઍડ કરો.
2y=4
2 માં 2 ઍડ કરો.
y=2
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
2x-10\times 2=-20
2x-10y=-20માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x-20=-20
2 ને -10 વાર ગુણાકાર કરો.
2x=0
સમીકરણની બન્ને બાજુ 20 ઍડ કરો.
x=0
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=0,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}