\left( \begin{array} { c c c } { 2 } & { 6 } & { 10 } \\ { - 2 } & { 0 } & { 2 } \\ { - 2 } & { 4 } & { 2 } \end{array} \right) \cdot \left( \begin{array} { c c c } { - 4 } & { 0 } & { 12 } \\ { 0 } & { 1 } & { 0 } \\ { 5 } & { 0 } & { 10 } \end{array} \right)
મૂલ્યાંકન કરો
\left(\begin{matrix}42&6&124\\18&0&-4\\18&4&-4\end{matrix}\right)
સારણિની ગણતરી કરો
9600
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\left(\begin{matrix}2&6&10\\-2&0&2\\-2&4&2\end{matrix}\right)\left(\begin{matrix}-4&0&12\\0&1&0\\5&0&10\end{matrix}\right)
મેટ્રિક્સ ગુણાકાર આ રીતે વ્યાખ્યાયિત છે જો પહેલા મેટ્રિક્સની હરોળની સંખ્યા બીજા મેટ્રિક્સની પંક્તિઓની સંખ્યા બરાબર હોય.
\left(\begin{matrix}2\left(-4\right)+10\times 5&&\\&&\\&&\end{matrix}\right)
પહેલા મેટ્રિક્સના પ્રથમ પંક્તિના પ્રત્યેક તત્વને બીજા મેટ્રિક્સના પ્રથમ હરોળના સંબંધિત તત્વ સાથે ગુણાકાર કરો અને પછી ગુણનફળ મેટ્રિક્સની પ્રથમ પંક્તિ અને પ્રથમ હરોળના તત્વને મેળવવા માટે આ ગુણનફળને ઍડ કરો.
\left(\begin{matrix}2\left(-4\right)+10\times 5&6&2\times 12+10\times 10\\-2\left(-4\right)+2\times 5&0&-2\times 12+2\times 10\\-2\left(-4\right)+2\times 5&4&-2\times 12+2\times 10\end{matrix}\right)
ગુણનફળ મેટ્રિક્સના બાકીના તત્વો સમાન રીતે શોધાયા છે.
\left(\begin{matrix}-8+50&6&24+100\\8+10&0&-24+20\\8+10&4&-24+20\end{matrix}\right)
પ્રત્યેક તત્વનો એકલ પદો સાથે ગુણાકાર કરીને સરળ બનાવો.
\left(\begin{matrix}42&6&124\\18&0&-4\\18&4&-4\end{matrix}\right)
મેટ્રિક્સના પ્રત્યેક ઘટકનો સરવાળો કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}