મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x+y=3,5x+y=6
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+y=3
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-y+3
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-y+3\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{1}{2}y+\frac{3}{2}
-y+3 ને \frac{1}{2} વાર ગુણાકાર કરો.
5\left(-\frac{1}{2}y+\frac{3}{2}\right)+y=6
અન્ય સમીકરણ, 5x+y=6 માં x માટે \frac{-y+3}{2} નો પ્રતિસ્થાપન કરો.
-\frac{5}{2}y+\frac{15}{2}+y=6
\frac{-y+3}{2} ને 5 વાર ગુણાકાર કરો.
-\frac{3}{2}y+\frac{15}{2}=6
y માં -\frac{5y}{2} ઍડ કરો.
-\frac{3}{2}y=-\frac{3}{2}
સમીકરણની બન્ને બાજુથી \frac{15}{2} નો ઘટાડો કરો.
y=1
સમીકરણની બન્ને બાજુનો -\frac{3}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{-1+3}{2}
x=-\frac{1}{2}y+\frac{3}{2}માં y માટે 1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=1
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{1}{2} માં \frac{3}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=1,y=1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+y=3,5x+y=6
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&1\\5&1\end{matrix}\right))\left(\begin{matrix}2&1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&1\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
\left(\begin{matrix}2&1\\5&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&1\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\5&1\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-5}&-\frac{1}{2-5}\\-\frac{5}{2-5}&\frac{2}{2-5}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\\frac{5}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 3+\frac{1}{3}\times 6\\\frac{5}{3}\times 3-\frac{2}{3}\times 6\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
અંકગણિતીય કરો.
x=1,y=1
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+y=3,5x+y=6
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2x-5x+y-y=3-6
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2x+y=3માંથી 5x+y=6 ને ઘટાડો.
2x-5x=3-6
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
-3x=3-6
-5x માં 2x ઍડ કરો.
-3x=-3
-6 માં 3 ઍડ કરો.
x=1
બન્ને બાજુનો -3 થી ભાગાકાર કરો.
5+y=6
5x+y=6માં x માટે 1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=1
સમીકરણની બન્ને બાજુથી 5 નો ઘટાડો કરો.
x=1,y=1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.