મુખ્ય સમાવિષ્ટ પર જાવ
y, x માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y-x=-18
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-\frac{1}{4}x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{4}x ઘટાડો.
y-x=-18,y-\frac{1}{4}x=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y-x=-18
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=x-18
સમીકરણની બન્ને બાજુ x ઍડ કરો.
x-18-\frac{1}{4}x=0
અન્ય સમીકરણ, y-\frac{1}{4}x=0 માં y માટે x-18 નો પ્રતિસ્થાપન કરો.
\frac{3}{4}x-18=0
-\frac{x}{4} માં x ઍડ કરો.
\frac{3}{4}x=18
સમીકરણની બન્ને બાજુ 18 ઍડ કરો.
x=24
સમીકરણની બન્ને બાજુનો \frac{3}{4} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
y=24-18
y=x-18માં x માટે 24 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=6
24 માં -18 ઍડ કરો.
y=6,x=24
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y-x=-18
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-\frac{1}{4}x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{4}x ઘટાડો.
y-x=-18,y-\frac{1}{4}x=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-18\\0\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-18\\0\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-18\\0\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-18\\0\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{4}}{-\frac{1}{4}-\left(-1\right)}&-\frac{-1}{-\frac{1}{4}-\left(-1\right)}\\-\frac{1}{-\frac{1}{4}-\left(-1\right)}&\frac{1}{-\frac{1}{4}-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-18\\0\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{3}\\-\frac{4}{3}&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}-18\\0\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-18\right)\\-\frac{4}{3}\left(-18\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\24\end{matrix}\right)
અંકગણિતીય કરો.
y=6,x=24
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y-x=-18
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી x ઘટાડો.
y-\frac{1}{4}x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{4}x ઘટાડો.
y-x=-18,y-\frac{1}{4}x=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
y-y-x+\frac{1}{4}x=-18
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી y-x=-18માંથી y-\frac{1}{4}x=0 ને ઘટાડો.
-x+\frac{1}{4}x=-18
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
-\frac{3}{4}x=-18
\frac{x}{4} માં -x ઍડ કરો.
x=24
સમીકરણની બન્ને બાજુનો -\frac{3}{4} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
y-\frac{1}{4}\times 24=0
y-\frac{1}{4}x=0માં x માટે 24 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y-6=0
24 ને -\frac{1}{4} વાર ગુણાકાર કરો.
y=6
સમીકરણની બન્ને બાજુ 6 ઍડ કરો.
y=6,x=24
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.