\left\{ \begin{array} { l } { y = - \frac { 3 } { 2 } x + 3 } \\ { y = \frac { 3 } { 2 } x } \end{array} \right.
y, x માટે ઉકેલો
x=1
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
y+\frac{3}{2}x=3
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{3}{2}x ઍડ કરો.
y-\frac{3}{2}x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{3}{2}x ઘટાડો.
y+\frac{3}{2}x=3,y-\frac{3}{2}x=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
y+\frac{3}{2}x=3
એક સમીકરણની પસંદગી કરો અને તેને y ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને y માટે ઉકેલો.
y=-\frac{3}{2}x+3
સમીકરણની બન્ને બાજુથી \frac{3x}{2} નો ઘટાડો કરો.
-\frac{3}{2}x+3-\frac{3}{2}x=0
અન્ય સમીકરણ, y-\frac{3}{2}x=0 માં y માટે -\frac{3x}{2}+3 નો પ્રતિસ્થાપન કરો.
-3x+3=0
-\frac{3x}{2} માં -\frac{3x}{2} ઍડ કરો.
-3x=-3
સમીકરણની બન્ને બાજુથી 3 નો ઘટાડો કરો.
x=1
બન્ને બાજુનો -3 થી ભાગાકાર કરો.
y=-\frac{3}{2}+3
y=-\frac{3}{2}x+3માં x માટે 1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=\frac{3}{2}
-\frac{3}{2} માં 3 ઍડ કરો.
y=\frac{3}{2},x=1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y+\frac{3}{2}x=3
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{3}{2}x ઍડ કરો.
y-\frac{3}{2}x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{3}{2}x ઘટાડો.
y+\frac{3}{2}x=3,y-\frac{3}{2}x=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{2}\\1&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{3}{2}}{-\frac{3}{2}-\frac{3}{2}}&-\frac{\frac{3}{2}}{-\frac{3}{2}-\frac{3}{2}}\\-\frac{1}{-\frac{3}{2}-\frac{3}{2}}&\frac{1}{-\frac{3}{2}-\frac{3}{2}}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3\\\frac{1}{3}\times 3\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\1\end{matrix}\right)
અંકગણિતીય કરો.
y=\frac{3}{2},x=1
મેટ્રિક્સ ઘટકો y અને x ને કાઢો.
y+\frac{3}{2}x=3
પ્રથમ સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે \frac{3}{2}x ઍડ કરો.
y-\frac{3}{2}x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{3}{2}x ઘટાડો.
y+\frac{3}{2}x=3,y-\frac{3}{2}x=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
y-y+\frac{3}{2}x+\frac{3}{2}x=3
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી y+\frac{3}{2}x=3માંથી y-\frac{3}{2}x=0 ને ઘટાડો.
\frac{3}{2}x+\frac{3}{2}x=3
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
3x=3
\frac{3x}{2} માં \frac{3x}{2} ઍડ કરો.
x=1
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
y-\frac{3}{2}=0
y-\frac{3}{2}x=0માં x માટે 1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
y=\frac{3}{2}
સમીકરણની બન્ને બાજુ \frac{3}{2} ઍડ કરો.
y=\frac{3}{2},x=1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}