મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x-y=2a,2x+3y=5-a
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x-y=2a
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=y+2a
સમીકરણની બન્ને બાજુ y ઍડ કરો.
2\left(y+2a\right)+3y=5-a
અન્ય સમીકરણ, 2x+3y=5-a માં x માટે y+2a નો પ્રતિસ્થાપન કરો.
2y+4a+3y=5-a
y+2a ને 2 વાર ગુણાકાર કરો.
5y+4a=5-a
3y માં 2y ઍડ કરો.
5y=5-5a
સમીકરણની બન્ને બાજુથી 4a નો ઘટાડો કરો.
y=1-a
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=1-a+2a
x=y+2aમાં y માટે 1-a ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=a+1
1-a માં 2a ઍડ કરો.
x=a+1,y=1-a
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x-y=2a,2x+3y=5-a
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2a\\5-a\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}1&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}2a\\5-a\end{matrix}\right)
\left(\begin{matrix}1&-1\\2&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}2a\\5-a\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}2a\\5-a\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\right)}&-\frac{-1}{3-\left(-2\right)}\\-\frac{2}{3-\left(-2\right)}&\frac{1}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2a\\5-a\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}2a\\5-a\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 2a+\frac{1}{5}\left(5-a\right)\\-\frac{2}{5}\times 2a+\frac{1}{5}\left(5-a\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+1\\1-a\end{matrix}\right)
અંકગણિતીય કરો.
x=a+1,y=1-a
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x-y=2a,2x+3y=5-a
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2x+2\left(-1\right)y=2\times 2a,2x+3y=5-a
x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
2x-2y=4a,2x+3y=5-a
સરળ બનાવો.
2x-2x-2y-3y=4a+a-5
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2x-2y=4aમાંથી 2x+3y=5-a ને ઘટાડો.
-2y-3y=4a+a-5
-2x માં 2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2x અને -2x ને વિભાજિત કરો.
-5y=4a+a-5
-3y માં -2y ઍડ કરો.
-5y=5a-5
-5+a માં 4a ઍડ કરો.
y=1-a
બન્ને બાજુનો -5 થી ભાગાકાર કરો.
2x+3\left(1-a\right)=5-a
2x+3y=5-aમાં y માટે 1-a ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x+3-3a=5-a
1-a ને 3 વાર ગુણાકાર કરો.
2x=2a+2
સમીકરણની બન્ને બાજુથી 3-3a નો ઘટાડો કરો.
x=a+1
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=a+1,y=1-a
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.