\left\{ \begin{array} { l } { x - y = 2 } \\ { 4 x = 7 y + 5 } \end{array} \right.
x, y માટે ઉકેલો
x=3
y=1
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4x-7y=5
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 7y ઘટાડો.
x-y=2,4x-7y=5
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x-y=2
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=y+2
સમીકરણની બન્ને બાજુ y ઍડ કરો.
4\left(y+2\right)-7y=5
અન્ય સમીકરણ, 4x-7y=5 માં x માટે y+2 નો પ્રતિસ્થાપન કરો.
4y+8-7y=5
y+2 ને 4 વાર ગુણાકાર કરો.
-3y+8=5
-7y માં 4y ઍડ કરો.
-3y=-3
સમીકરણની બન્ને બાજુથી 8 નો ઘટાડો કરો.
y=1
બન્ને બાજુનો -3 થી ભાગાકાર કરો.
x=1+2
x=y+2માં y માટે 1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=3
1 માં 2 ઍડ કરો.
x=3,y=1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x-7y=5
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 7y ઘટાડો.
x-y=2,4x-7y=5
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right))\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right))\left(\begin{matrix}2\\5\end{matrix}\right)
\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right))\left(\begin{matrix}2\\5\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right))\left(\begin{matrix}2\\5\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-4\right)}&-\frac{-1}{-7-\left(-4\right)}\\-\frac{4}{-7-\left(-4\right)}&\frac{1}{-7-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}2\\5\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}&-\frac{1}{3}\\\frac{4}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}2\\5\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}\times 2-\frac{1}{3}\times 5\\\frac{4}{3}\times 2-\frac{1}{3}\times 5\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
અંકગણિતીય કરો.
x=3,y=1
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x-7y=5
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 7y ઘટાડો.
x-y=2,4x-7y=5
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4x+4\left(-1\right)y=4\times 2,4x-7y=5
x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
4x-4y=8,4x-7y=5
સરળ બનાવો.
4x-4x-4y+7y=8-5
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 4x-4y=8માંથી 4x-7y=5 ને ઘટાડો.
-4y+7y=8-5
-4x માં 4x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 4x અને -4x ને વિભાજિત કરો.
3y=8-5
7y માં -4y ઍડ કરો.
3y=3
-5 માં 8 ઍડ કરો.
y=1
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
4x-7=5
4x-7y=5માં y માટે 1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x=12
સમીકરણની બન્ને બાજુ 7 ઍડ કરો.
x=3
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=3,y=1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}