મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x-7y=6,5x+3y=2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x-7y=6
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=7y+6
સમીકરણની બન્ને બાજુ 7y ઍડ કરો.
5\left(7y+6\right)+3y=2
અન્ય સમીકરણ, 5x+3y=2 માં x માટે 7y+6 નો પ્રતિસ્થાપન કરો.
35y+30+3y=2
7y+6 ને 5 વાર ગુણાકાર કરો.
38y+30=2
3y માં 35y ઍડ કરો.
38y=-28
સમીકરણની બન્ને બાજુથી 30 નો ઘટાડો કરો.
y=-\frac{14}{19}
બન્ને બાજુનો 38 થી ભાગાકાર કરો.
x=7\left(-\frac{14}{19}\right)+6
x=7y+6માં y માટે -\frac{14}{19} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{98}{19}+6
-\frac{14}{19} ને 7 વાર ગુણાકાર કરો.
x=\frac{16}{19}
-\frac{98}{19} માં 6 ઍડ કરો.
x=\frac{16}{19},y=-\frac{14}{19}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x-7y=6,5x+3y=2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-7\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-7\\5&3\end{matrix}\right))\left(\begin{matrix}1&-7\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
\left(\begin{matrix}1&-7\\5&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-7\times 5\right)}&-\frac{-7}{3-\left(-7\times 5\right)}\\-\frac{5}{3-\left(-7\times 5\right)}&\frac{1}{3-\left(-7\times 5\right)}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{38}&\frac{7}{38}\\-\frac{5}{38}&\frac{1}{38}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{38}\times 6+\frac{7}{38}\times 2\\-\frac{5}{38}\times 6+\frac{1}{38}\times 2\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{19}\\-\frac{14}{19}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{16}{19},y=-\frac{14}{19}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x-7y=6,5x+3y=2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
5x+5\left(-7\right)y=5\times 6,5x+3y=2
x અને 5x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 5 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
5x-35y=30,5x+3y=2
સરળ બનાવો.
5x-5x-35y-3y=30-2
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 5x-35y=30માંથી 5x+3y=2 ને ઘટાડો.
-35y-3y=30-2
-5x માં 5x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 5x અને -5x ને વિભાજિત કરો.
-38y=30-2
-3y માં -35y ઍડ કરો.
-38y=28
-2 માં 30 ઍડ કરો.
y=-\frac{14}{19}
બન્ને બાજુનો -38 થી ભાગાકાર કરો.
5x+3\left(-\frac{14}{19}\right)=2
5x+3y=2માં y માટે -\frac{14}{19} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
5x-\frac{42}{19}=2
-\frac{14}{19} ને 3 વાર ગુણાકાર કરો.
5x=\frac{80}{19}
સમીકરણની બન્ને બાજુ \frac{42}{19} ઍડ કરો.
x=\frac{16}{19}
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=\frac{16}{19},y=-\frac{14}{19}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.