મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y+3x=0
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 3x ઍડ કરો.
x-2y=7,3x+y=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x-2y=7
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=2y+7
સમીકરણની બન્ને બાજુ 2y ઍડ કરો.
3\left(2y+7\right)+y=0
અન્ય સમીકરણ, 3x+y=0 માં x માટે 2y+7 નો પ્રતિસ્થાપન કરો.
6y+21+y=0
2y+7 ને 3 વાર ગુણાકાર કરો.
7y+21=0
y માં 6y ઍડ કરો.
7y=-21
સમીકરણની બન્ને બાજુથી 21 નો ઘટાડો કરો.
y=-3
બન્ને બાજુનો 7 થી ભાગાકાર કરો.
x=2\left(-3\right)+7
x=2y+7માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-6+7
-3 ને 2 વાર ગુણાકાર કરો.
x=1
-6 માં 7 ઍડ કરો.
x=1,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y+3x=0
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 3x ઍડ કરો.
x-2y=7,3x+y=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-2\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\0\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}1&-2\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}7\\0\end{matrix}\right)
\left(\begin{matrix}1&-2\\3&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}7\\0\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&1\end{matrix}\right))\left(\begin{matrix}7\\0\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\times 3\right)}&-\frac{-2}{1-\left(-2\times 3\right)}\\-\frac{3}{1-\left(-2\times 3\right)}&\frac{1}{1-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}7\\0\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\-\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}7\\0\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 7\\-\frac{3}{7}\times 7\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
અંકગણિતીય કરો.
x=1,y=-3
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
y+3x=0
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 3x ઍડ કરો.
x-2y=7,3x+y=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3x+3\left(-2\right)y=3\times 7,3x+y=0
x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
3x-6y=21,3x+y=0
સરળ બનાવો.
3x-3x-6y-y=21
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 3x-6y=21માંથી 3x+y=0 ને ઘટાડો.
-6y-y=21
-3x માં 3x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 3x અને -3x ને વિભાજિત કરો.
-7y=21
-y માં -6y ઍડ કરો.
y=-3
બન્ને બાજુનો -7 થી ભાગાકાર કરો.
3x-3=0
3x+y=0માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x=3
સમીકરણની બન્ને બાજુ 3 ઍડ કરો.
x=1
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=1,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.