મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x+y=7,-4x+y=-3
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+y=7
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-y+7
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
-4\left(-y+7\right)+y=-3
અન્ય સમીકરણ, -4x+y=-3 માં x માટે -y+7 નો પ્રતિસ્થાપન કરો.
4y-28+y=-3
-y+7 ને -4 વાર ગુણાકાર કરો.
5y-28=-3
y માં 4y ઍડ કરો.
5y=25
સમીકરણની બન્ને બાજુ 28 ઍડ કરો.
y=5
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=-5+7
x=-y+7માં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=2
-5 માં 7 ઍડ કરો.
x=2,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x+y=7,-4x+y=-3
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&1\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-3\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&1\\-4&1\end{matrix}\right))\left(\begin{matrix}1&1\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-4&1\end{matrix}\right))\left(\begin{matrix}7\\-3\end{matrix}\right)
\left(\begin{matrix}1&1\\-4&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-4&1\end{matrix}\right))\left(\begin{matrix}7\\-3\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-4&1\end{matrix}\right))\left(\begin{matrix}7\\-3\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\right)}&-\frac{1}{1-\left(-4\right)}\\-\frac{-4}{1-\left(-4\right)}&\frac{1}{1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}7\\-3\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{1}{5}\\\frac{4}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}7\\-3\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 7-\frac{1}{5}\left(-3\right)\\\frac{4}{5}\times 7+\frac{1}{5}\left(-3\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
અંકગણિતીય કરો.
x=2,y=5
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x+y=7,-4x+y=-3
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
x+4x+y-y=7+3
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી x+y=7માંથી -4x+y=-3 ને ઘટાડો.
x+4x=7+3
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
5x=7+3
4x માં x ઍડ કરો.
5x=10
3 માં 7 ઍડ કરો.
x=2
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
-4\times 2+y=-3
-4x+y=-3માં x માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
-8+y=-3
2 ને -4 વાર ગુણાકાર કરો.
y=5
સમીકરણની બન્ને બાજુ 8 ઍડ કરો.
x=2,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.