મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

y+2-2x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 2x ઘટાડો.
y-2x=-2
બન્ને બાજુથી 2 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
x+y=40,-2x+y=-2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+y=40
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-y+40
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
-2\left(-y+40\right)+y=-2
અન્ય સમીકરણ, -2x+y=-2 માં x માટે -y+40 નો પ્રતિસ્થાપન કરો.
2y-80+y=-2
-y+40 ને -2 વાર ગુણાકાર કરો.
3y-80=-2
y માં 2y ઍડ કરો.
3y=78
સમીકરણની બન્ને બાજુ 80 ઍડ કરો.
y=26
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-26+40
x=-y+40માં y માટે 26 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=14
-26 માં 40 ઍડ કરો.
x=14,y=26
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y+2-2x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 2x ઘટાડો.
y-2x=-2
બન્ને બાજુથી 2 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
x+y=40,-2x+y=-2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\-2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}40\\-2\end{matrix}\right)
\left(\begin{matrix}1&1\\-2&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}40\\-2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-2&1\end{matrix}\right))\left(\begin{matrix}40\\-2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{1}{1-\left(-2\right)}\\-\frac{-2}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}40\\-2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}40\\-2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 40-\frac{1}{3}\left(-2\right)\\\frac{2}{3}\times 40+\frac{1}{3}\left(-2\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\26\end{matrix}\right)
અંકગણિતીય કરો.
x=14,y=26
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
y+2-2x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી 2x ઘટાડો.
y-2x=-2
બન્ને બાજુથી 2 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
x+y=40,-2x+y=-2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
x+2x+y-y=40+2
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી x+y=40માંથી -2x+y=-2 ને ઘટાડો.
x+2x=40+2
-y માં y ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો y અને -y ને વિભાજિત કરો.
3x=40+2
2x માં x ઍડ કરો.
3x=42
2 માં 40 ઍડ કરો.
x=14
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
-2\times 14+y=-2
-2x+y=-2માં x માટે 14 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું y માટે ઉકેલો.
-28+y=-2
14 ને -2 વાર ગુણાકાર કરો.
y=26
સમીકરણની બન્ને બાજુ 28 ઍડ કરો.
x=14,y=26
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.