\left\{ \begin{array} { l } { x + y = 30 } \\ { 2 x + 25 y = 698 } \end{array} \right.
x, y માટે ઉકેલો
x = \frac{52}{23} = 2\frac{6}{23} \approx 2.260869565
y = \frac{638}{23} = 27\frac{17}{23} \approx 27.739130435
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
x+y=30,2x+25y=698
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+y=30
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-y+30
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
2\left(-y+30\right)+25y=698
અન્ય સમીકરણ, 2x+25y=698 માં x માટે -y+30 નો પ્રતિસ્થાપન કરો.
-2y+60+25y=698
-y+30 ને 2 વાર ગુણાકાર કરો.
23y+60=698
25y માં -2y ઍડ કરો.
23y=638
સમીકરણની બન્ને બાજુથી 60 નો ઘટાડો કરો.
y=\frac{638}{23}
બન્ને બાજુનો 23 થી ભાગાકાર કરો.
x=-\frac{638}{23}+30
x=-y+30માં y માટે \frac{638}{23} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{52}{23}
-\frac{638}{23} માં 30 ઍડ કરો.
x=\frac{52}{23},y=\frac{638}{23}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x+y=30,2x+25y=698
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&1\\2&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\698\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}1&1\\2&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
\left(\begin{matrix}1&1\\2&25\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{25-2}&-\frac{1}{25-2}\\-\frac{2}{25-2}&\frac{1}{25-2}\end{matrix}\right)\left(\begin{matrix}30\\698\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{23}&-\frac{1}{23}\\-\frac{2}{23}&\frac{1}{23}\end{matrix}\right)\left(\begin{matrix}30\\698\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{23}\times 30-\frac{1}{23}\times 698\\-\frac{2}{23}\times 30+\frac{1}{23}\times 698\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{52}{23}\\\frac{638}{23}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{52}{23},y=\frac{638}{23}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x+y=30,2x+25y=698
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2x+2y=2\times 30,2x+25y=698
x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
2x+2y=60,2x+25y=698
સરળ બનાવો.
2x-2x+2y-25y=60-698
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2x+2y=60માંથી 2x+25y=698 ને ઘટાડો.
2y-25y=60-698
-2x માં 2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2x અને -2x ને વિભાજિત કરો.
-23y=60-698
-25y માં 2y ઍડ કરો.
-23y=-638
-698 માં 60 ઍડ કરો.
y=\frac{638}{23}
બન્ને બાજુનો -23 થી ભાગાકાર કરો.
2x+25\times \frac{638}{23}=698
2x+25y=698માં y માટે \frac{638}{23} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x+\frac{15950}{23}=698
\frac{638}{23} ને 25 વાર ગુણાકાર કરો.
2x=\frac{104}{23}
સમીકરણની બન્ને બાજુથી \frac{15950}{23} નો ઘટાડો કરો.
x=\frac{52}{23}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{52}{23},y=\frac{638}{23}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}