મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x+3-y=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી y ઘટાડો.
x-y=-3
બન્ને બાજુથી 3 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
x-y=-3,x+y=2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x-y=-3
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=y-3
સમીકરણની બન્ને બાજુ y ઍડ કરો.
y-3+y=2
અન્ય સમીકરણ, x+y=2 માં x માટે y-3 નો પ્રતિસ્થાપન કરો.
2y-3=2
y માં y ઍડ કરો.
2y=5
સમીકરણની બન્ને બાજુ 3 ઍડ કરો.
y=\frac{5}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{5}{2}-3
x=y-3માં y માટે \frac{5}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{1}{2}
\frac{5}{2} માં -3 ઍડ કરો.
x=-\frac{1}{2},y=\frac{5}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x+3-y=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી y ઘટાડો.
x-y=-3
બન્ને બાજુથી 3 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
x-y=-3,x+y=2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 2\\-\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 2\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\\frac{5}{2}\end{matrix}\right)
અંકગણિતીય કરો.
x=-\frac{1}{2},y=\frac{5}{2}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x+3-y=0
પ્રથમ સમીકરણનો વિચાર કરો. બન્ને બાજુથી y ઘટાડો.
x-y=-3
બન્ને બાજુથી 3 ઘટાડો. કંઈપણને શૂન્યમાંથી બાદ કરવાથી તેનું નકારાત્મક આપે છે.
x-y=-3,x+y=2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
x-x-y-y=-3-2
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી x-y=-3માંથી x+y=2 ને ઘટાડો.
-y-y=-3-2
-x માં x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો x અને -x ને વિભાજિત કરો.
-2y=-3-2
-y માં -y ઍડ કરો.
-2y=-5
-2 માં -3 ઍડ કરો.
y=\frac{5}{2}
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
x+\frac{5}{2}=2
x+y=2માં y માટે \frac{5}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{1}{2}
સમીકરણની બન્ને બાજુથી \frac{5}{2} નો ઘટાડો કરો.
x=-\frac{1}{2},y=\frac{5}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.