મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

x+2y=7,4x+3y=3
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+2y=7
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-2y+7
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
4\left(-2y+7\right)+3y=3
અન્ય સમીકરણ, 4x+3y=3 માં x માટે -2y+7 નો પ્રતિસ્થાપન કરો.
-8y+28+3y=3
-2y+7 ને 4 વાર ગુણાકાર કરો.
-5y+28=3
3y માં -8y ઍડ કરો.
-5y=-25
સમીકરણની બન્ને બાજુથી 28 નો ઘટાડો કરો.
y=5
બન્ને બાજુનો -5 થી ભાગાકાર કરો.
x=-2\times 5+7
x=-2y+7માં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-10+7
5 ને -2 વાર ગુણાકાર કરો.
x=-3
-10 માં 7 ઍડ કરો.
x=-3,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x+2y=7,4x+3y=3
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\3\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}1&2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
\left(\begin{matrix}1&2\\4&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 4}&-\frac{2}{3-2\times 4}\\-\frac{4}{3-2\times 4}&\frac{1}{3-2\times 4}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{2}{5}\\\frac{4}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\times 7+\frac{2}{5}\times 3\\\frac{4}{5}\times 7-\frac{1}{5}\times 3\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\5\end{matrix}\right)
અંકગણિતીય કરો.
x=-3,y=5
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x+2y=7,4x+3y=3
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4x+4\times 2y=4\times 7,4x+3y=3
x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
4x+8y=28,4x+3y=3
સરળ બનાવો.
4x-4x+8y-3y=28-3
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 4x+8y=28માંથી 4x+3y=3 ને ઘટાડો.
8y-3y=28-3
-4x માં 4x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 4x અને -4x ને વિભાજિત કરો.
5y=28-3
-3y માં 8y ઍડ કરો.
5y=25
-3 માં 28 ઍડ કરો.
y=5
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
4x+3\times 5=3
4x+3y=3માં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x+15=3
5 ને 3 વાર ગુણાકાર કરો.
4x=-12
સમીકરણની બન્ને બાજુથી 15 નો ઘટાડો કરો.
x=-3
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-3,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.