\left\{ \begin{array} { l } { x + 2 y = 11 } \\ { 2 x + 3 y = 19 } \end{array} \right.
x, y માટે ઉકેલો
x=5
y=3
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
x+2y=11,2x+3y=19
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+2y=11
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-2y+11
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
2\left(-2y+11\right)+3y=19
અન્ય સમીકરણ, 2x+3y=19 માં x માટે -2y+11 નો પ્રતિસ્થાપન કરો.
-4y+22+3y=19
-2y+11 ને 2 વાર ગુણાકાર કરો.
-y+22=19
3y માં -4y ઍડ કરો.
-y=-3
સમીકરણની બન્ને બાજુથી 22 નો ઘટાડો કરો.
y=3
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x=-2\times 3+11
x=-2y+11માં y માટે 3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-6+11
3 ને -2 વાર ગુણાકાર કરો.
x=5
-6 માં 11 ઍડ કરો.
x=5,y=3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
x+2y=11,2x+3y=19
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\19\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}11\\19\end{matrix}\right)
\left(\begin{matrix}1&2\\2&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}11\\19\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}11\\19\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 2}&-\frac{2}{3-2\times 2}\\-\frac{2}{3-2\times 2}&\frac{1}{3-2\times 2}\end{matrix}\right)\left(\begin{matrix}11\\19\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}11\\19\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 11+2\times 19\\2\times 11-19\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
અંકગણિતીય કરો.
x=5,y=3
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
x+2y=11,2x+3y=19
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2x+2\times 2y=2\times 11,2x+3y=19
x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
2x+4y=22,2x+3y=19
સરળ બનાવો.
2x-2x+4y-3y=22-19
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2x+4y=22માંથી 2x+3y=19 ને ઘટાડો.
4y-3y=22-19
-2x માં 2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2x અને -2x ને વિભાજિત કરો.
y=22-19
-3y માં 4y ઍડ કરો.
y=3
-19 માં 22 ઍડ કરો.
2x+3\times 3=19
2x+3y=19માં y માટે 3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x+9=19
3 ને 3 વાર ગુણાકાર કરો.
2x=10
સમીકરણની બન્ને બાજુથી 9 નો ઘટાડો કરો.
x=5
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=5,y=3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}