મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

4y+3x=1
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 3x ઍડ કરો.
x+2y=-2,3x+4y=1
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
x+2y=-2
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
x=-2y-2
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
3\left(-2y-2\right)+4y=1
અન્ય સમીકરણ, 3x+4y=1 માં x માટે -2y-2 નો પ્રતિસ્થાપન કરો.
-6y-6+4y=1
-2y-2 ને 3 વાર ગુણાકાર કરો.
-2y-6=1
4y માં -6y ઍડ કરો.
-2y=7
સમીકરણની બન્ને બાજુ 6 ઍડ કરો.
y=-\frac{7}{2}
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
x=-2\left(-\frac{7}{2}\right)-2
x=-2y-2માં y માટે -\frac{7}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=7-2
-\frac{7}{2} ને -2 વાર ગુણાકાર કરો.
x=5
7 માં -2 ઍડ કરો.
x=5,y=-\frac{7}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4y+3x=1
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 3x ઍડ કરો.
x+2y=-2,3x+4y=1
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}1&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
\left(\begin{matrix}1&2\\3&4\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\times 3}&-\frac{2}{4-2\times 3}\\-\frac{3}{4-2\times 3}&\frac{1}{4-2\times 3}\end{matrix}\right)\left(\begin{matrix}-2\\1\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\1\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-2\right)+1\\\frac{3}{2}\left(-2\right)-\frac{1}{2}\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-\frac{7}{2}\end{matrix}\right)
અંકગણિતીય કરો.
x=5,y=-\frac{7}{2}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4y+3x=1
બીજા સમીકરણનો વિચાર કરો. બંને સાઇડ્સ માટે 3x ઍડ કરો.
x+2y=-2,3x+4y=1
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3x+3\times 2y=3\left(-2\right),3x+4y=1
x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 1 સાથે ગુણાકાર કરો.
3x+6y=-6,3x+4y=1
સરળ બનાવો.
3x-3x+6y-4y=-6-1
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 3x+6y=-6માંથી 3x+4y=1 ને ઘટાડો.
6y-4y=-6-1
-3x માં 3x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 3x અને -3x ને વિભાજિત કરો.
2y=-6-1
-4y માં 6y ઍડ કરો.
2y=-7
-1 માં -6 ઍડ કરો.
y=-\frac{7}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
3x+4\left(-\frac{7}{2}\right)=1
3x+4y=1માં y માટે -\frac{7}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x-14=1
-\frac{7}{2} ને 4 વાર ગુણાકાર કરો.
3x=15
સમીકરણની બન્ને બાજુ 14 ઍડ કરો.
x=5
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=5,y=-\frac{7}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.