\left\{ \begin{array} { l } { 6 x + 2 y = 300 } \\ { 3 x + 5 y = 600 } \end{array} \right.
x, y માટે ઉકેલો
x = \frac{25}{2} = 12\frac{1}{2} = 12.5
y = \frac{225}{2} = 112\frac{1}{2} = 112.5
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
6x+2y=300,3x+5y=600
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
6x+2y=300
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
6x=-2y+300
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{6}\left(-2y+300\right)
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
x=-\frac{1}{3}y+50
-2y+300 ને \frac{1}{6} વાર ગુણાકાર કરો.
3\left(-\frac{1}{3}y+50\right)+5y=600
અન્ય સમીકરણ, 3x+5y=600 માં x માટે -\frac{y}{3}+50 નો પ્રતિસ્થાપન કરો.
-y+150+5y=600
-\frac{y}{3}+50 ને 3 વાર ગુણાકાર કરો.
4y+150=600
5y માં -y ઍડ કરો.
4y=450
સમીકરણની બન્ને બાજુથી 150 નો ઘટાડો કરો.
y=\frac{225}{2}
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{1}{3}\times \frac{225}{2}+50
x=-\frac{1}{3}y+50માં y માટે \frac{225}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{75}{2}+50
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{1}{3} નો \frac{225}{2} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{25}{2}
-\frac{75}{2} માં 50 ઍડ કરો.
x=\frac{25}{2},y=\frac{225}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
6x+2y=300,3x+5y=600
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}6&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\600\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}6&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
\left(\begin{matrix}6&2\\3&5\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-2\times 3}&-\frac{2}{6\times 5-2\times 3}\\-\frac{3}{6\times 5-2\times 3}&\frac{6}{6\times 5-2\times 3}\end{matrix}\right)\left(\begin{matrix}300\\600\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}&-\frac{1}{12}\\-\frac{1}{8}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}300\\600\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}\times 300-\frac{1}{12}\times 600\\-\frac{1}{8}\times 300+\frac{1}{4}\times 600\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{2}\\\frac{225}{2}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{25}{2},y=\frac{225}{2}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
6x+2y=300,3x+5y=600
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 6x+3\times 2y=3\times 300,6\times 3x+6\times 5y=6\times 600
6x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 6 સાથે ગુણાકાર કરો.
18x+6y=900,18x+30y=3600
સરળ બનાવો.
18x-18x+6y-30y=900-3600
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 18x+6y=900માંથી 18x+30y=3600 ને ઘટાડો.
6y-30y=900-3600
-18x માં 18x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 18x અને -18x ને વિભાજિત કરો.
-24y=900-3600
-30y માં 6y ઍડ કરો.
-24y=-2700
-3600 માં 900 ઍડ કરો.
y=\frac{225}{2}
બન્ને બાજુનો -24 થી ભાગાકાર કરો.
3x+5\times \frac{225}{2}=600
3x+5y=600માં y માટે \frac{225}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x+\frac{1125}{2}=600
\frac{225}{2} ને 5 વાર ગુણાકાર કરો.
3x=\frac{75}{2}
સમીકરણની બન્ને બાજુથી \frac{1125}{2} નો ઘટાડો કરો.
x=\frac{25}{2}
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=\frac{25}{2},y=\frac{225}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}