\left\{ \begin{array} { l } { 6 x + 15 y = 360 } \\ { 8 x + 10 y = 440 } \end{array} \right.
x, y માટે ઉકેલો
x=50
y=4
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
6x+15y=360,8x+10y=440
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
6x+15y=360
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
6x=-15y+360
સમીકરણની બન્ને બાજુથી 15y નો ઘટાડો કરો.
x=\frac{1}{6}\left(-15y+360\right)
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
x=-\frac{5}{2}y+60
-15y+360 ને \frac{1}{6} વાર ગુણાકાર કરો.
8\left(-\frac{5}{2}y+60\right)+10y=440
અન્ય સમીકરણ, 8x+10y=440 માં x માટે -\frac{5y}{2}+60 નો પ્રતિસ્થાપન કરો.
-20y+480+10y=440
-\frac{5y}{2}+60 ને 8 વાર ગુણાકાર કરો.
-10y+480=440
10y માં -20y ઍડ કરો.
-10y=-40
સમીકરણની બન્ને બાજુથી 480 નો ઘટાડો કરો.
y=4
બન્ને બાજુનો -10 થી ભાગાકાર કરો.
x=-\frac{5}{2}\times 4+60
x=-\frac{5}{2}y+60માં y માટે 4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-10+60
4 ને -\frac{5}{2} વાર ગુણાકાર કરો.
x=50
-10 માં 60 ઍડ કરો.
x=50,y=4
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
6x+15y=360,8x+10y=440
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}6&15\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}360\\440\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}6&15\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}360\\440\end{matrix}\right)
\left(\begin{matrix}6&15\\8&10\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}360\\440\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&15\\8&10\end{matrix}\right))\left(\begin{matrix}360\\440\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{6\times 10-15\times 8}&-\frac{15}{6\times 10-15\times 8}\\-\frac{8}{6\times 10-15\times 8}&\frac{6}{6\times 10-15\times 8}\end{matrix}\right)\left(\begin{matrix}360\\440\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{4}\\\frac{2}{15}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}360\\440\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 360+\frac{1}{4}\times 440\\\frac{2}{15}\times 360-\frac{1}{10}\times 440\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\4\end{matrix}\right)
અંકગણિતીય કરો.
x=50,y=4
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
6x+15y=360,8x+10y=440
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
8\times 6x+8\times 15y=8\times 360,6\times 8x+6\times 10y=6\times 440
6x અને 8x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 8 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 6 સાથે ગુણાકાર કરો.
48x+120y=2880,48x+60y=2640
સરળ બનાવો.
48x-48x+120y-60y=2880-2640
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 48x+120y=2880માંથી 48x+60y=2640 ને ઘટાડો.
120y-60y=2880-2640
-48x માં 48x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 48x અને -48x ને વિભાજિત કરો.
60y=2880-2640
-60y માં 120y ઍડ કરો.
60y=240
-2640 માં 2880 ઍડ કરો.
y=4
બન્ને બાજુનો 60 થી ભાગાકાર કરો.
8x+10\times 4=440
8x+10y=440માં y માટે 4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
8x+40=440
4 ને 10 વાર ગુણાકાર કરો.
8x=400
સમીકરણની બન્ને બાજુથી 40 નો ઘટાડો કરો.
x=50
બન્ને બાજુનો 8 થી ભાગાકાર કરો.
x=50,y=4
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}