\left\{ \begin{array} { l } { 5 x - y = 5 } \\ { y = \frac { 1 } { 5 } x } \end{array} \right.
x, y માટે ઉકેલો
x = \frac{25}{24} = 1\frac{1}{24} \approx 1.041666667
y=\frac{5}{24}\approx 0.208333333
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
y-\frac{1}{5}x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{5}x ઘટાડો.
5x-y=5,-\frac{1}{5}x+y=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
5x-y=5
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
5x=y+5
સમીકરણની બન્ને બાજુ y ઍડ કરો.
x=\frac{1}{5}\left(y+5\right)
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=\frac{1}{5}y+1
y+5 ને \frac{1}{5} વાર ગુણાકાર કરો.
-\frac{1}{5}\left(\frac{1}{5}y+1\right)+y=0
અન્ય સમીકરણ, -\frac{1}{5}x+y=0 માં x માટે \frac{y}{5}+1 નો પ્રતિસ્થાપન કરો.
-\frac{1}{25}y-\frac{1}{5}+y=0
\frac{y}{5}+1 ને -\frac{1}{5} વાર ગુણાકાર કરો.
\frac{24}{25}y-\frac{1}{5}=0
y માં -\frac{y}{25} ઍડ કરો.
\frac{24}{25}y=\frac{1}{5}
સમીકરણની બન્ને બાજુ \frac{1}{5} ઍડ કરો.
y=\frac{5}{24}
સમીકરણની બન્ને બાજુનો \frac{24}{25} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{1}{5}\times \frac{5}{24}+1
x=\frac{1}{5}y+1માં y માટે \frac{5}{24} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{1}{24}+1
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{1}{5} નો \frac{5}{24} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{25}{24}
\frac{1}{24} માં 1 ઍડ કરો.
x=\frac{25}{24},y=\frac{5}{24}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
y-\frac{1}{5}x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{5}x ઘટાડો.
5x-y=5,-\frac{1}{5}x+y=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right))\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-\frac{1}{5}&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-\left(-\left(-\frac{1}{5}\right)\right)}&-\frac{-1}{5-\left(-\left(-\frac{1}{5}\right)\right)}\\-\frac{-\frac{1}{5}}{5-\left(-\left(-\frac{1}{5}\right)\right)}&\frac{5}{5-\left(-\left(-\frac{1}{5}\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}&\frac{5}{24}\\\frac{1}{24}&\frac{25}{24}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}\times 5\\\frac{1}{24}\times 5\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{24}\\\frac{5}{24}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{25}{24},y=\frac{5}{24}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
y-\frac{1}{5}x=0
બીજા સમીકરણનો વિચાર કરો. બન્ને બાજુથી \frac{1}{5}x ઘટાડો.
5x-y=5,-\frac{1}{5}x+y=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-\frac{1}{5}\times 5x-\frac{1}{5}\left(-1\right)y=-\frac{1}{5}\times 5,5\left(-\frac{1}{5}\right)x+5y=0
5x અને -\frac{x}{5} ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -\frac{1}{5} સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 5 સાથે ગુણાકાર કરો.
-x+\frac{1}{5}y=-1,-x+5y=0
સરળ બનાવો.
-x+x+\frac{1}{5}y-5y=-1
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -x+\frac{1}{5}y=-1માંથી -x+5y=0 ને ઘટાડો.
\frac{1}{5}y-5y=-1
x માં -x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -x અને x ને વિભાજિત કરો.
-\frac{24}{5}y=-1
-5y માં \frac{y}{5} ઍડ કરો.
y=\frac{5}{24}
સમીકરણની બન્ને બાજુનો -\frac{24}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
-\frac{1}{5}x+\frac{5}{24}=0
-\frac{1}{5}x+y=0માં y માટે \frac{5}{24} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-\frac{1}{5}x=-\frac{5}{24}
સમીકરણની બન્ને બાજુથી \frac{5}{24} નો ઘટાડો કરો.
x=\frac{25}{24}
બન્ને બાજુનો -5 દ્વારા ગુણાકાર કરો.
x=\frac{25}{24},y=\frac{5}{24}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}