\left\{ \begin{array} { l } { 5 x + 5 y = 15 } \\ { 4 x + 10 y = - 2 } \end{array} \right.
x, y માટે ઉકેલો
x = \frac{16}{3} = 5\frac{1}{3} \approx 5.333333333
y = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
5x+5y=15,4x+10y=-2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
5x+5y=15
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
5x=-5y+15
સમીકરણની બન્ને બાજુથી 5y નો ઘટાડો કરો.
x=\frac{1}{5}\left(-5y+15\right)
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=-y+3
-5y+15 ને \frac{1}{5} વાર ગુણાકાર કરો.
4\left(-y+3\right)+10y=-2
અન્ય સમીકરણ, 4x+10y=-2 માં x માટે -y+3 નો પ્રતિસ્થાપન કરો.
-4y+12+10y=-2
-y+3 ને 4 વાર ગુણાકાર કરો.
6y+12=-2
10y માં -4y ઍડ કરો.
6y=-14
સમીકરણની બન્ને બાજુથી 12 નો ઘટાડો કરો.
y=-\frac{7}{3}
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
x=-\left(-\frac{7}{3}\right)+3
x=-y+3માં y માટે -\frac{7}{3} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{7}{3}+3
-\frac{7}{3} ને -1 વાર ગુણાકાર કરો.
x=\frac{16}{3}
\frac{7}{3} માં 3 ઍડ કરો.
x=\frac{16}{3},y=-\frac{7}{3}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
5x+5y=15,4x+10y=-2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}5&5\\4&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}5&5\\4&10\end{matrix}\right))\left(\begin{matrix}5&5\\4&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\4&10\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
\left(\begin{matrix}5&5\\4&10\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\4&10\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\4&10\end{matrix}\right))\left(\begin{matrix}15\\-2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{5\times 10-5\times 4}&-\frac{5}{5\times 10-5\times 4}\\-\frac{4}{5\times 10-5\times 4}&\frac{5}{5\times 10-5\times 4}\end{matrix}\right)\left(\begin{matrix}15\\-2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{6}\\-\frac{2}{15}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}15\\-2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 15-\frac{1}{6}\left(-2\right)\\-\frac{2}{15}\times 15+\frac{1}{6}\left(-2\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{3}\\-\frac{7}{3}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{16}{3},y=-\frac{7}{3}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
5x+5y=15,4x+10y=-2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4\times 5x+4\times 5y=4\times 15,5\times 4x+5\times 10y=5\left(-2\right)
5x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 5 સાથે ગુણાકાર કરો.
20x+20y=60,20x+50y=-10
સરળ બનાવો.
20x-20x+20y-50y=60+10
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 20x+20y=60માંથી 20x+50y=-10 ને ઘટાડો.
20y-50y=60+10
-20x માં 20x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 20x અને -20x ને વિભાજિત કરો.
-30y=60+10
-50y માં 20y ઍડ કરો.
-30y=70
10 માં 60 ઍડ કરો.
y=-\frac{7}{3}
બન્ને બાજુનો -30 થી ભાગાકાર કરો.
4x+10\left(-\frac{7}{3}\right)=-2
4x+10y=-2માં y માટે -\frac{7}{3} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x-\frac{70}{3}=-2
-\frac{7}{3} ને 10 વાર ગુણાકાર કરો.
4x=\frac{64}{3}
સમીકરણની બન્ને બાજુ \frac{70}{3} ઍડ કરો.
x=\frac{16}{3}
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=\frac{16}{3},y=-\frac{7}{3}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}