\left\{ \begin{array} { l } { 5 x + 1 y = 2 } \\ { 2 x - 5 y = 2 } \end{array} \right.
x, y માટે ઉકેલો
x=\frac{4}{9}\approx 0.444444444
y=-\frac{2}{9}\approx -0.222222222
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
5x+y=2,2x-5y=2
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
5x+y=2
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
5x=-y+2
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
x=\frac{1}{5}\left(-y+2\right)
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=-\frac{1}{5}y+\frac{2}{5}
-y+2 ને \frac{1}{5} વાર ગુણાકાર કરો.
2\left(-\frac{1}{5}y+\frac{2}{5}\right)-5y=2
અન્ય સમીકરણ, 2x-5y=2 માં x માટે \frac{-y+2}{5} નો પ્રતિસ્થાપન કરો.
-\frac{2}{5}y+\frac{4}{5}-5y=2
\frac{-y+2}{5} ને 2 વાર ગુણાકાર કરો.
-\frac{27}{5}y+\frac{4}{5}=2
-5y માં -\frac{2y}{5} ઍડ કરો.
-\frac{27}{5}y=\frac{6}{5}
સમીકરણની બન્ને બાજુથી \frac{4}{5} નો ઘટાડો કરો.
y=-\frac{2}{9}
સમીકરણની બન્ને બાજુનો -\frac{27}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{1}{5}\left(-\frac{2}{9}\right)+\frac{2}{5}
x=-\frac{1}{5}y+\frac{2}{5}માં y માટે -\frac{2}{9} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{2}{45}+\frac{2}{5}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{1}{5} નો -\frac{2}{9} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{4}{9}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{2}{45} માં \frac{2}{5} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{4}{9},y=-\frac{2}{9}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
5x+y=2,2x-5y=2
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}5&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}5&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
\left(\begin{matrix}5&1\\2&-5\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&-5\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{5\left(-5\right)-2}&-\frac{1}{5\left(-5\right)-2}\\-\frac{2}{5\left(-5\right)-2}&\frac{5}{5\left(-5\right)-2}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{27}&\frac{1}{27}\\\frac{2}{27}&-\frac{5}{27}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{27}\times 2+\frac{1}{27}\times 2\\\frac{2}{27}\times 2-\frac{5}{27}\times 2\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9}\\-\frac{2}{9}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{4}{9},y=-\frac{2}{9}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
5x+y=2,2x-5y=2
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 5x+2y=2\times 2,5\times 2x+5\left(-5\right)y=5\times 2
5x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 5 સાથે ગુણાકાર કરો.
10x+2y=4,10x-25y=10
સરળ બનાવો.
10x-10x+2y+25y=4-10
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 10x+2y=4માંથી 10x-25y=10 ને ઘટાડો.
2y+25y=4-10
-10x માં 10x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 10x અને -10x ને વિભાજિત કરો.
27y=4-10
25y માં 2y ઍડ કરો.
27y=-6
-10 માં 4 ઍડ કરો.
y=-\frac{2}{9}
બન્ને બાજુનો 27 થી ભાગાકાર કરો.
2x-5\left(-\frac{2}{9}\right)=2
2x-5y=2માં y માટે -\frac{2}{9} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x+\frac{10}{9}=2
-\frac{2}{9} ને -5 વાર ગુણાકાર કરો.
2x=\frac{8}{9}
સમીકરણની બન્ને બાજુથી \frac{10}{9} નો ઘટાડો કરો.
x=\frac{4}{9}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{4}{9},y=-\frac{2}{9}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}