મુખ્ય સમાવિષ્ટ પર જાવ
k, b માટે ઉકેલો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3k+b=5
પ્રથમ સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
-4k+b=-9
બીજા સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
3k+b=5,-4k+b=-9
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3k+b=5
એક સમીકરણની પસંદગી કરો અને તેને k ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને k માટે ઉકેલો.
3k=-b+5
સમીકરણની બન્ને બાજુથી b નો ઘટાડો કરો.
k=\frac{1}{3}\left(-b+5\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
k=-\frac{1}{3}b+\frac{5}{3}
-b+5 ને \frac{1}{3} વાર ગુણાકાર કરો.
-4\left(-\frac{1}{3}b+\frac{5}{3}\right)+b=-9
અન્ય સમીકરણ, -4k+b=-9 માં k માટે \frac{-b+5}{3} નો પ્રતિસ્થાપન કરો.
\frac{4}{3}b-\frac{20}{3}+b=-9
\frac{-b+5}{3} ને -4 વાર ગુણાકાર કરો.
\frac{7}{3}b-\frac{20}{3}=-9
b માં \frac{4b}{3} ઍડ કરો.
\frac{7}{3}b=-\frac{7}{3}
સમીકરણની બન્ને બાજુ \frac{20}{3} ઍડ કરો.
b=-1
સમીકરણની બન્ને બાજુનો \frac{7}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
k=-\frac{1}{3}\left(-1\right)+\frac{5}{3}
k=-\frac{1}{3}b+\frac{5}{3}માં b માટે -1 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું k માટે ઉકેલો.
k=\frac{1+5}{3}
-1 ને -\frac{1}{3} વાર ગુણાકાર કરો.
k=2
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{1}{3} માં \frac{5}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
k=2,b=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3k+b=5
પ્રથમ સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
-4k+b=-9
બીજા સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
3k+b=5,-4k+b=-9
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}5\\-9\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
\left(\begin{matrix}3&1\\-4&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-4&1\end{matrix}\right))\left(\begin{matrix}5\\-9\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\right)}&-\frac{1}{3-\left(-4\right)}\\-\frac{-4}{3-\left(-4\right)}&\frac{3}{3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{7}\\\frac{4}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\-9\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 5-\frac{1}{7}\left(-9\right)\\\frac{4}{7}\times 5+\frac{3}{7}\left(-9\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
અંકગણિતીય કરો.
k=2,b=-1
મેટ્રિક્સ ઘટકો k અને b ને કાઢો.
3k+b=5
પ્રથમ સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
-4k+b=-9
બીજા સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
3k+b=5,-4k+b=-9
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3k+4k+b-b=5+9
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 3k+b=5માંથી -4k+b=-9 ને ઘટાડો.
3k+4k=5+9
-b માં b ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો b અને -b ને વિભાજિત કરો.
7k=5+9
4k માં 3k ઍડ કરો.
7k=14
9 માં 5 ઍડ કરો.
k=2
બન્ને બાજુનો 7 થી ભાગાકાર કરો.
-4\times 2+b=-9
-4k+b=-9માં k માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું b માટે ઉકેલો.
-8+b=-9
2 ને -4 વાર ગુણાકાર કરો.
b=-1
સમીકરણની બન્ને બાજુ 8 ઍડ કરો.
k=2,b=-1
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.