મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

4x-y=14,6x+y=16
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x-y=14
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=y+14
સમીકરણની બન્ને બાજુ y ઍડ કરો.
x=\frac{1}{4}\left(y+14\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=\frac{1}{4}y+\frac{7}{2}
y+14 ને \frac{1}{4} વાર ગુણાકાર કરો.
6\left(\frac{1}{4}y+\frac{7}{2}\right)+y=16
અન્ય સમીકરણ, 6x+y=16 માં x માટે \frac{y}{4}+\frac{7}{2} નો પ્રતિસ્થાપન કરો.
\frac{3}{2}y+21+y=16
\frac{y}{4}+\frac{7}{2} ને 6 વાર ગુણાકાર કરો.
\frac{5}{2}y+21=16
y માં \frac{3y}{2} ઍડ કરો.
\frac{5}{2}y=-5
સમીકરણની બન્ને બાજુથી 21 નો ઘટાડો કરો.
y=-2
સમીકરણની બન્ને બાજુનો \frac{5}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{1}{4}\left(-2\right)+\frac{7}{2}
x=\frac{1}{4}y+\frac{7}{2}માં y માટે -2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-1+7}{2}
-2 ને \frac{1}{4} વાર ગુણાકાર કરો.
x=3
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{1}{2} માં \frac{7}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=3,y=-2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x-y=14,6x+y=16
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\16\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}4&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
\left(\begin{matrix}4&-1\\6&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\6&1\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-6\right)}&-\frac{-1}{4-\left(-6\right)}\\-\frac{6}{4-\left(-6\right)}&\frac{4}{4-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 14+\frac{1}{10}\times 16\\-\frac{3}{5}\times 14+\frac{2}{5}\times 16\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
અંકગણિતીય કરો.
x=3,y=-2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x-y=14,6x+y=16
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
6\times 4x+6\left(-1\right)y=6\times 14,4\times 6x+4y=4\times 16
4x અને 6x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 6 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
24x-6y=84,24x+4y=64
સરળ બનાવો.
24x-24x-6y-4y=84-64
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 24x-6y=84માંથી 24x+4y=64 ને ઘટાડો.
-6y-4y=84-64
-24x માં 24x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 24x અને -24x ને વિભાજિત કરો.
-10y=84-64
-4y માં -6y ઍડ કરો.
-10y=20
-64 માં 84 ઍડ કરો.
y=-2
બન્ને બાજુનો -10 થી ભાગાકાર કરો.
6x-2=16
6x+y=16માં y માટે -2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
6x=18
સમીકરણની બન્ને બાજુ 2 ઍડ કરો.
x=3
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
x=3,y=-2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.