\left\{ \begin{array} { l } { 4 x + 3 y = 6 } \\ { 2 x - y = 8 } \end{array} \right.
x, y માટે ઉકેલો
x=3
y=-2
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4x+3y=6,2x-y=8
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x+3y=6
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=-3y+6
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=\frac{1}{4}\left(-3y+6\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{3}{4}y+\frac{3}{2}
-3y+6 ને \frac{1}{4} વાર ગુણાકાર કરો.
2\left(-\frac{3}{4}y+\frac{3}{2}\right)-y=8
અન્ય સમીકરણ, 2x-y=8 માં x માટે -\frac{3y}{4}+\frac{3}{2} નો પ્રતિસ્થાપન કરો.
-\frac{3}{2}y+3-y=8
-\frac{3y}{4}+\frac{3}{2} ને 2 વાર ગુણાકાર કરો.
-\frac{5}{2}y+3=8
-y માં -\frac{3y}{2} ઍડ કરો.
-\frac{5}{2}y=5
સમીકરણની બન્ને બાજુથી 3 નો ઘટાડો કરો.
y=-2
સમીકરણની બન્ને બાજુનો -\frac{5}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{3}{4}\left(-2\right)+\frac{3}{2}
x=-\frac{3}{4}y+\frac{3}{2}માં y માટે -2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{3+3}{2}
-2 ને -\frac{3}{4} વાર ગુણાકાર કરો.
x=3
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{3}{2} માં \frac{3}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=3,y=-2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x+3y=6,2x-y=8
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}4&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
\left(\begin{matrix}4&3\\2&-1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-3\times 2}&-\frac{3}{4\left(-1\right)-3\times 2}\\-\frac{2}{4\left(-1\right)-3\times 2}&\frac{4}{4\left(-1\right)-3\times 2}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{3}{10}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 6+\frac{3}{10}\times 8\\\frac{1}{5}\times 6-\frac{2}{5}\times 8\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
અંકગણિતીય કરો.
x=3,y=-2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x+3y=6,2x-y=8
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 4x+2\times 3y=2\times 6,4\times 2x+4\left(-1\right)y=4\times 8
4x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
8x+6y=12,8x-4y=32
સરળ બનાવો.
8x-8x+6y+4y=12-32
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 8x+6y=12માંથી 8x-4y=32 ને ઘટાડો.
6y+4y=12-32
-8x માં 8x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 8x અને -8x ને વિભાજિત કરો.
10y=12-32
4y માં 6y ઍડ કરો.
10y=-20
-32 માં 12 ઍડ કરો.
y=-2
બન્ને બાજુનો 10 થી ભાગાકાર કરો.
2x-\left(-2\right)=8
2x-y=8માં y માટે -2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x=6
સમીકરણની બન્ને બાજુથી 2 નો ઘટાડો કરો.
x=3
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=3,y=-2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}