\left\{ \begin{array} { l } { 4 x + 2 y = 6 } \\ { 3 x - y = - 8 } \end{array} \right.
x, y માટે ઉકેલો
x=-1
y=5
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4x+2y=6,3x-y=-8
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x+2y=6
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=-2y+6
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{4}\left(-2y+6\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{1}{2}y+\frac{3}{2}
-2y+6 ને \frac{1}{4} વાર ગુણાકાર કરો.
3\left(-\frac{1}{2}y+\frac{3}{2}\right)-y=-8
અન્ય સમીકરણ, 3x-y=-8 માં x માટે \frac{-y+3}{2} નો પ્રતિસ્થાપન કરો.
-\frac{3}{2}y+\frac{9}{2}-y=-8
\frac{-y+3}{2} ને 3 વાર ગુણાકાર કરો.
-\frac{5}{2}y+\frac{9}{2}=-8
-y માં -\frac{3y}{2} ઍડ કરો.
-\frac{5}{2}y=-\frac{25}{2}
સમીકરણની બન્ને બાજુથી \frac{9}{2} નો ઘટાડો કરો.
y=5
સમીકરણની બન્ને બાજુનો -\frac{5}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{1}{2}\times 5+\frac{3}{2}
x=-\frac{1}{2}y+\frac{3}{2}માં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-5+3}{2}
5 ને -\frac{1}{2} વાર ગુણાકાર કરો.
x=-1
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{5}{2} માં \frac{3}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-1,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x+2y=6,3x-y=-8
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-8\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}4&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-8\end{matrix}\right)
\left(\begin{matrix}4&2\\3&-1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-8\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-8\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-2\times 3}&-\frac{2}{4\left(-1\right)-2\times 3}\\-\frac{3}{4\left(-1\right)-2\times 3}&\frac{4}{4\left(-1\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}6\\-8\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{5}\\\frac{3}{10}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}6\\-8\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 6+\frac{1}{5}\left(-8\right)\\\frac{3}{10}\times 6-\frac{2}{5}\left(-8\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
અંકગણિતીય કરો.
x=-1,y=5
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x+2y=6,3x-y=-8
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 4x+3\times 2y=3\times 6,4\times 3x+4\left(-1\right)y=4\left(-8\right)
4x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
12x+6y=18,12x-4y=-32
સરળ બનાવો.
12x-12x+6y+4y=18+32
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 12x+6y=18માંથી 12x-4y=-32 ને ઘટાડો.
6y+4y=18+32
-12x માં 12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 12x અને -12x ને વિભાજિત કરો.
10y=18+32
4y માં 6y ઍડ કરો.
10y=50
32 માં 18 ઍડ કરો.
y=5
બન્ને બાજુનો 10 થી ભાગાકાર કરો.
3x-5=-8
3x-y=-8માં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x=-3
સમીકરણની બન્ને બાજુ 5 ઍડ કરો.
x=-1
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-1,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}