\left\{ \begin{array} { l } { 4 x + 2 y = - 2 } \\ { 2 x + 3 y = - 7 } \end{array} \right.
x, y માટે ઉકેલો
x=1
y=-3
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
4x+2y=-2,2x+3y=-7
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
4x+2y=-2
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
4x=-2y-2
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{4}\left(-2y-2\right)
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-\frac{1}{2}y-\frac{1}{2}
-2y-2 ને \frac{1}{4} વાર ગુણાકાર કરો.
2\left(-\frac{1}{2}y-\frac{1}{2}\right)+3y=-7
અન્ય સમીકરણ, 2x+3y=-7 માં x માટે \frac{-y-1}{2} નો પ્રતિસ્થાપન કરો.
-y-1+3y=-7
\frac{-y-1}{2} ને 2 વાર ગુણાકાર કરો.
2y-1=-7
3y માં -y ઍડ કરો.
2y=-6
સમીકરણની બન્ને બાજુ 1 ઍડ કરો.
y=-3
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{1}{2}\left(-3\right)-\frac{1}{2}
x=-\frac{1}{2}y-\frac{1}{2}માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{3-1}{2}
-3 ને -\frac{1}{2} વાર ગુણાકાર કરો.
x=1
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{3}{2} માં -\frac{1}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=1,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
4x+2y=-2,2x+3y=-7
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}4&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-7\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}4&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\-7\end{matrix}\right)
\left(\begin{matrix}4&2\\2&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\-7\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\2&3\end{matrix}\right))\left(\begin{matrix}-2\\-7\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-2\times 2}&-\frac{2}{4\times 3-2\times 2}\\-\frac{2}{4\times 3-2\times 2}&\frac{4}{4\times 3-2\times 2}\end{matrix}\right)\left(\begin{matrix}-2\\-7\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{4}\\-\frac{1}{4}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\-7\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\left(-2\right)-\frac{1}{4}\left(-7\right)\\-\frac{1}{4}\left(-2\right)+\frac{1}{2}\left(-7\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
અંકગણિતીય કરો.
x=1,y=-3
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
4x+2y=-2,2x+3y=-7
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 4x+2\times 2y=2\left(-2\right),4\times 2x+4\times 3y=4\left(-7\right)
4x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 4 સાથે ગુણાકાર કરો.
8x+4y=-4,8x+12y=-28
સરળ બનાવો.
8x-8x+4y-12y=-4+28
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 8x+4y=-4માંથી 8x+12y=-28 ને ઘટાડો.
4y-12y=-4+28
-8x માં 8x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 8x અને -8x ને વિભાજિત કરો.
-8y=-4+28
-12y માં 4y ઍડ કરો.
-8y=24
28 માં -4 ઍડ કરો.
y=-3
બન્ને બાજુનો -8 થી ભાગાકાર કરો.
2x+3\left(-3\right)=-7
2x+3y=-7માં y માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x-9=-7
-3 ને 3 વાર ગુણાકાર કરો.
2x=2
સમીકરણની બન્ને બાજુ 9 ઍડ કરો.
x=1
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=1,y=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}