મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x+y=3,5x-y=15
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+y=3
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-y+3
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-y+3\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{1}{3}y+1
-y+3 ને \frac{1}{3} વાર ગુણાકાર કરો.
5\left(-\frac{1}{3}y+1\right)-y=15
અન્ય સમીકરણ, 5x-y=15 માં x માટે -\frac{y}{3}+1 નો પ્રતિસ્થાપન કરો.
-\frac{5}{3}y+5-y=15
-\frac{y}{3}+1 ને 5 વાર ગુણાકાર કરો.
-\frac{8}{3}y+5=15
-y માં -\frac{5y}{3} ઍડ કરો.
-\frac{8}{3}y=10
સમીકરણની બન્ને બાજુથી 5 નો ઘટાડો કરો.
y=-\frac{15}{4}
સમીકરણની બન્ને બાજુનો -\frac{8}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{1}{3}\left(-\frac{15}{4}\right)+1
x=-\frac{1}{3}y+1માં y માટે -\frac{15}{4} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{5}{4}+1
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{1}{3} નો -\frac{15}{4} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{9}{4}
\frac{5}{4} માં 1 ઍડ કરો.
x=\frac{9}{4},y=-\frac{15}{4}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+y=3,5x-y=15
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\15\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
\left(\begin{matrix}3&1\\5&-1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-5}&-\frac{1}{3\left(-1\right)-5}\\-\frac{5}{3\left(-1\right)-5}&\frac{3}{3\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}3\\15\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{5}{8}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}3\\15\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 3+\frac{1}{8}\times 15\\\frac{5}{8}\times 3-\frac{3}{8}\times 15\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{4}\\-\frac{15}{4}\end{matrix}\right)
અંકગણિતીય કરો.
x=\frac{9}{4},y=-\frac{15}{4}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+y=3,5x-y=15
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
5\times 3x+5y=5\times 3,3\times 5x+3\left(-1\right)y=3\times 15
3x અને 5x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 5 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
15x+5y=15,15x-3y=45
સરળ બનાવો.
15x-15x+5y+3y=15-45
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 15x+5y=15માંથી 15x-3y=45 ને ઘટાડો.
5y+3y=15-45
-15x માં 15x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 15x અને -15x ને વિભાજિત કરો.
8y=15-45
3y માં 5y ઍડ કરો.
8y=-30
-45 માં 15 ઍડ કરો.
y=-\frac{15}{4}
બન્ને બાજુનો 8 થી ભાગાકાર કરો.
5x-\left(-\frac{15}{4}\right)=15
5x-y=15માં y માટે -\frac{15}{4} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
5x=\frac{45}{4}
સમીકરણની બન્ને બાજુથી \frac{15}{4} નો ઘટાડો કરો.
x=\frac{9}{4}
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=\frac{9}{4},y=-\frac{15}{4}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.