\left\{ \begin{array} { l } { 3 x + y = - 1 } \\ { x + 5 y = 9 } \end{array} \right.
x, y માટે ઉકેલો
x=-1
y=2
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
3x+y=-1,x+5y=9
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+y=-1
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-y-1
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-y-1\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{1}{3}y-\frac{1}{3}
-y-1 ને \frac{1}{3} વાર ગુણાકાર કરો.
-\frac{1}{3}y-\frac{1}{3}+5y=9
અન્ય સમીકરણ, x+5y=9 માં x માટે \frac{-y-1}{3} નો પ્રતિસ્થાપન કરો.
\frac{14}{3}y-\frac{1}{3}=9
5y માં -\frac{y}{3} ઍડ કરો.
\frac{14}{3}y=\frac{28}{3}
સમીકરણની બન્ને બાજુ \frac{1}{3} ઍડ કરો.
y=2
સમીકરણની બન્ને બાજુનો \frac{14}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{1}{3}\times 2-\frac{1}{3}
x=-\frac{1}{3}y-\frac{1}{3}માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{-2-1}{3}
2 ને -\frac{1}{3} વાર ગુણાકાર કરો.
x=-1
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{2}{3} માં -\frac{1}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-1,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+y=-1,x+5y=9
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\9\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}3&1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
\left(\begin{matrix}3&1\\1&5\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-1}&-\frac{1}{3\times 5-1}\\-\frac{1}{3\times 5-1}&\frac{3}{3\times 5-1}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&-\frac{1}{14}\\-\frac{1}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-1\right)-\frac{1}{14}\times 9\\-\frac{1}{14}\left(-1\right)+\frac{3}{14}\times 9\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
અંકગણિતીય કરો.
x=-1,y=2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+y=-1,x+5y=9
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3x+y=-1,3x+3\times 5y=3\times 9
3x અને x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
3x+y=-1,3x+15y=27
સરળ બનાવો.
3x-3x+y-15y=-1-27
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 3x+y=-1માંથી 3x+15y=27 ને ઘટાડો.
y-15y=-1-27
-3x માં 3x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 3x અને -3x ને વિભાજિત કરો.
-14y=-1-27
-15y માં y ઍડ કરો.
-14y=-28
-27 માં -1 ઍડ કરો.
y=2
બન્ને બાજુનો -14 થી ભાગાકાર કરો.
x+5\times 2=9
x+5y=9માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x+10=9
2 ને 5 વાર ગુણાકાર કરો.
x=-1
સમીકરણની બન્ને બાજુથી 10 નો ઘટાડો કરો.
x=-1,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}