મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x+5y=1,2x-3y=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+5y=1
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-5y+1
સમીકરણની બન્ને બાજુથી 5y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-5y+1\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{5}{3}y+\frac{1}{3}
-5y+1 ને \frac{1}{3} વાર ગુણાકાર કરો.
2\left(-\frac{5}{3}y+\frac{1}{3}\right)-3y=0
અન્ય સમીકરણ, 2x-3y=0 માં x માટે \frac{-5y+1}{3} નો પ્રતિસ્થાપન કરો.
-\frac{10}{3}y+\frac{2}{3}-3y=0
\frac{-5y+1}{3} ને 2 વાર ગુણાકાર કરો.
-\frac{19}{3}y+\frac{2}{3}=0
-3y માં -\frac{10y}{3} ઍડ કરો.
-\frac{19}{3}y=-\frac{2}{3}
સમીકરણની બન્ને બાજુથી \frac{2}{3} નો ઘટાડો કરો.
y=\frac{2}{19}
સમીકરણની બન્ને બાજુનો -\frac{19}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{5}{3}\times \frac{2}{19}+\frac{1}{3}
x=-\frac{5}{3}y+\frac{1}{3}માં y માટે \frac{2}{19} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-\frac{10}{57}+\frac{1}{3}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને -\frac{5}{3} નો \frac{2}{19} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{3}{19}
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને -\frac{10}{57} માં \frac{1}{3} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=\frac{3}{19},y=\frac{2}{19}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+5y=1,2x-3y=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&5\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&5\\2&-3\end{matrix}\right))\left(\begin{matrix}3&5\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-3\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
\left(\begin{matrix}3&5\\2&-3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-3\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&-3\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-5\times 2}&-\frac{5}{3\left(-3\right)-5\times 2}\\-\frac{2}{3\left(-3\right)-5\times 2}&\frac{3}{3\left(-3\right)-5\times 2}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&\frac{5}{19}\\\frac{2}{19}&-\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}\\\frac{2}{19}\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
x=\frac{3}{19},y=\frac{2}{19}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+5y=1,2x-3y=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2\times 3x+2\times 5y=2,3\times 2x+3\left(-3\right)y=0
3x અને 2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
6x+10y=2,6x-9y=0
સરળ બનાવો.
6x-6x+10y+9y=2
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6x+10y=2માંથી 6x-9y=0 ને ઘટાડો.
10y+9y=2
-6x માં 6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6x અને -6x ને વિભાજિત કરો.
19y=2
9y માં 10y ઍડ કરો.
y=\frac{2}{19}
બન્ને બાજુનો 19 થી ભાગાકાર કરો.
2x-3\times \frac{2}{19}=0
2x-3y=0માં y માટે \frac{2}{19} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x-\frac{6}{19}=0
\frac{2}{19} ને -3 વાર ગુણાકાર કરો.
2x=\frac{6}{19}
સમીકરણની બન્ને બાજુ \frac{6}{19} ઍડ કરો.
x=\frac{3}{19}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{3}{19},y=\frac{2}{19}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.