મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

3x=10-2y
બીજા સમીકરણનો વિચાર કરો. 2 સાથે 5-y નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3x+2y=10
બંને સાઇડ્સ માટે 2y ઍડ કરો.
2x-y=2,3x+2y=10
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x-y=2
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=y+2
સમીકરણની બન્ને બાજુ y ઍડ કરો.
x=\frac{1}{2}\left(y+2\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{1}{2}y+1
y+2 ને \frac{1}{2} વાર ગુણાકાર કરો.
3\left(\frac{1}{2}y+1\right)+2y=10
અન્ય સમીકરણ, 3x+2y=10 માં x માટે \frac{y}{2}+1 નો પ્રતિસ્થાપન કરો.
\frac{3}{2}y+3+2y=10
\frac{y}{2}+1 ને 3 વાર ગુણાકાર કરો.
\frac{7}{2}y+3=10
2y માં \frac{3y}{2} ઍડ કરો.
\frac{7}{2}y=7
સમીકરણની બન્ને બાજુથી 3 નો ઘટાડો કરો.
y=2
સમીકરણની બન્ને બાજુનો \frac{7}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{1}{2}\times 2+1
x=\frac{1}{2}y+1માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=1+1
2 ને \frac{1}{2} વાર ગુણાકાર કરો.
x=2
1 માં 1 ઍડ કરો.
x=2,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x=10-2y
બીજા સમીકરણનો વિચાર કરો. 2 સાથે 5-y નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3x+2y=10
બંને સાઇડ્સ માટે 2y ઍડ કરો.
2x-y=2,3x+2y=10
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\10\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
\left(\begin{matrix}2&-1\\3&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&2\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\right)}&-\frac{-1}{2\times 2-\left(-3\right)}\\-\frac{3}{2\times 2-\left(-3\right)}&\frac{2}{2\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ માટે \left(\begin{matrix}a&b\\c&d\end{matrix}\right), પ્રતિલોભ મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શક્યે છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{7}\\-\frac{3}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 2+\frac{1}{7}\times 10\\-\frac{3}{7}\times 2+\frac{2}{7}\times 10\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
અંકગણિતીય કરો.
x=2,y=2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x=10-2y
બીજા સમીકરણનો વિચાર કરો. 2 સાથે 5-y નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3x+2y=10
બંને સાઇડ્સ માટે 2y ઍડ કરો.
2x-y=2,3x+2y=10
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 2x+3\left(-1\right)y=3\times 2,2\times 3x+2\times 2y=2\times 10
2x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
6x-3y=6,6x+4y=20
સરળ બનાવો.
6x-6x-3y-4y=6-20
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6x-3y=6માંથી 6x+4y=20 ને ઘટાડો.
-3y-4y=6-20
-6x માં 6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6x અને -6x ને વિભાજિત કરો.
-7y=6-20
-4y માં -3y ઍડ કરો.
-7y=-14
-20 માં 6 ઍડ કરો.
y=2
બન્ને બાજુનો -7 થી ભાગાકાર કરો.
3x+2\times 2=10
3x+2y=10માં y માટે 2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x+4=10
2 ને 2 વાર ગુણાકાર કરો.
3x=6
સમીકરણની બન્ને બાજુથી 4 નો ઘટાડો કરો.
x=2
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=2,y=2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.