\left\{ \begin{array} { l } { 2 x - 3 y - 6 = 0 } \\ { 2 x + y + 2 = 0 } \end{array} \right.
x, y માટે ઉકેલો
x=0
y=-2
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x-3y-6=0,2x+y+2=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x-3y-6=0
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x-3y=6
સમીકરણની બન્ને બાજુ 6 ઍડ કરો.
2x=3y+6
સમીકરણની બન્ને બાજુ 3y ઍડ કરો.
x=\frac{1}{2}\left(3y+6\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=\frac{3}{2}y+3
6+3y ને \frac{1}{2} વાર ગુણાકાર કરો.
2\left(\frac{3}{2}y+3\right)+y+2=0
અન્ય સમીકરણ, 2x+y+2=0 માં x માટે \frac{3y}{2}+3 નો પ્રતિસ્થાપન કરો.
3y+6+y+2=0
\frac{3y}{2}+3 ને 2 વાર ગુણાકાર કરો.
4y+6+2=0
y માં 3y ઍડ કરો.
4y+8=0
2 માં 6 ઍડ કરો.
4y=-8
સમીકરણની બન્ને બાજુથી 8 નો ઘટાડો કરો.
y=-2
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=\frac{3}{2}\left(-2\right)+3
x=\frac{3}{2}y+3માં y માટે -2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-3+3
-2 ને \frac{3}{2} વાર ગુણાકાર કરો.
x=0
-3 માં 3 ઍડ કરો.
x=0,y=-2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x-3y-6=0,2x+y+2=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-2\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&-3\\2&1\end{matrix}\right))\left(\begin{matrix}2&-3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&1\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
\left(\begin{matrix}2&-3\\2&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&1\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&1\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\times 2\right)}&-\frac{-3}{2-\left(-3\times 2\right)}\\-\frac{2}{2-\left(-3\times 2\right)}&\frac{2}{2-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{3}{8}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{3}{8}\left(-2\right)\\-\frac{1}{4}\times 6+\frac{1}{4}\left(-2\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
અંકગણિતીય કરો.
x=0,y=-2
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x-3y-6=0,2x+y+2=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2x-2x-3y-y-6-2=0
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2x-3y-6=0માંથી 2x+y+2=0 ને ઘટાડો.
-3y-y-6-2=0
-2x માં 2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2x અને -2x ને વિભાજિત કરો.
-4y-6-2=0
-y માં -3y ઍડ કરો.
-4y-8=0
-2 માં -6 ઍડ કરો.
-4y=8
સમીકરણની બન્ને બાજુ 8 ઍડ કરો.
y=-2
બન્ને બાજુનો -4 થી ભાગાકાર કરો.
2x-2+2=0
2x+y+2=0માં y માટે -2 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x=0
2 માં -2 ઍડ કરો.
x=0
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=0,y=-2
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}