\left\{ \begin{array} { l } { 2 x + y = 4 } \\ { 3 x + 2 y = 4 } \end{array} \right.
x, y માટે ઉકેલો
x=4
y=-4
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x+y=4,3x+2y=4
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+y=4
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-y+4
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-y+4\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{1}{2}y+2
-y+4 ને \frac{1}{2} વાર ગુણાકાર કરો.
3\left(-\frac{1}{2}y+2\right)+2y=4
અન્ય સમીકરણ, 3x+2y=4 માં x માટે -\frac{y}{2}+2 નો પ્રતિસ્થાપન કરો.
-\frac{3}{2}y+6+2y=4
-\frac{y}{2}+2 ને 3 વાર ગુણાકાર કરો.
\frac{1}{2}y+6=4
2y માં -\frac{3y}{2} ઍડ કરો.
\frac{1}{2}y=-2
સમીકરણની બન્ને બાજુથી 6 નો ઘટાડો કરો.
y=-4
બન્ને બાજુનો 2 દ્વારા ગુણાકાર કરો.
x=-\frac{1}{2}\left(-4\right)+2
x=-\frac{1}{2}y+2માં y માટે -4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=2+2
-4 ને -\frac{1}{2} વાર ગુણાકાર કરો.
x=4
2 માં 2 ઍડ કરો.
x=4,y=-4
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+y=4,3x+2y=4
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}2&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
\left(\begin{matrix}2&1\\3&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&2\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3}&-\frac{1}{2\times 2-3}\\-\frac{3}{2\times 2-3}&\frac{2}{2\times 2-3}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\-3&2\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 4-4\\-3\times 4+2\times 4\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-4\end{matrix}\right)
અંકગણિતીય કરો.
x=4,y=-4
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+y=4,3x+2y=4
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
3\times 2x+3y=3\times 4,2\times 3x+2\times 2y=2\times 4
2x અને 3x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 3 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
6x+3y=12,6x+4y=8
સરળ બનાવો.
6x-6x+3y-4y=12-8
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 6x+3y=12માંથી 6x+4y=8 ને ઘટાડો.
3y-4y=12-8
-6x માં 6x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 6x અને -6x ને વિભાજિત કરો.
-y=12-8
-4y માં 3y ઍડ કરો.
-y=4
-8 માં 12 ઍડ કરો.
y=-4
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
3x+2\left(-4\right)=4
3x+2y=4માં y માટે -4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
3x-8=4
-4 ને 2 વાર ગુણાકાર કરો.
3x=12
સમીકરણની બન્ને બાજુ 8 ઍડ કરો.
x=4
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=4,y=-4
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}