મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x+y=-2,4x+5y=8
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+y=-2
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-y-2
સમીકરણની બન્ને બાજુથી y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-y-2\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{1}{2}y-1
-y-2 ને \frac{1}{2} વાર ગુણાકાર કરો.
4\left(-\frac{1}{2}y-1\right)+5y=8
અન્ય સમીકરણ, 4x+5y=8 માં x માટે -\frac{y}{2}-1 નો પ્રતિસ્થાપન કરો.
-2y-4+5y=8
-\frac{y}{2}-1 ને 4 વાર ગુણાકાર કરો.
3y-4=8
5y માં -2y ઍડ કરો.
3y=12
સમીકરણની બન્ને બાજુ 4 ઍડ કરો.
y=4
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{1}{2}\times 4-1
x=-\frac{1}{2}y-1માં y માટે 4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-2-1
4 ને -\frac{1}{2} વાર ગુણાકાર કરો.
x=-3
-2 માં -1 ઍડ કરો.
x=-3,y=4
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+y=-2,4x+5y=8
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\8\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}2&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
\left(\begin{matrix}2&1\\4&5\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&5\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-4}&-\frac{1}{2\times 5-4}\\-\frac{4}{2\times 5-4}&\frac{2}{2\times 5-4}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-\frac{1}{6}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\left(-2\right)-\frac{1}{6}\times 8\\-\frac{2}{3}\left(-2\right)+\frac{1}{3}\times 8\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\4\end{matrix}\right)
અંકગણિતીય કરો.
x=-3,y=4
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+y=-2,4x+5y=8
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4\times 2x+4y=4\left(-2\right),2\times 4x+2\times 5y=2\times 8
2x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
8x+4y=-8,8x+10y=16
સરળ બનાવો.
8x-8x+4y-10y=-8-16
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 8x+4y=-8માંથી 8x+10y=16 ને ઘટાડો.
4y-10y=-8-16
-8x માં 8x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 8x અને -8x ને વિભાજિત કરો.
-6y=-8-16
-10y માં 4y ઍડ કરો.
-6y=-24
-16 માં -8 ઍડ કરો.
y=4
બન્ને બાજુનો -6 થી ભાગાકાર કરો.
4x+5\times 4=8
4x+5y=8માં y માટે 4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x+20=8
4 ને 5 વાર ગુણાકાર કરો.
4x=-12
સમીકરણની બન્ને બાજુથી 20 નો ઘટાડો કરો.
x=-3
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=-3,y=4
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.