\left\{ \begin{array} { l } { 2 x + 8 y = 16 } \\ { 11 - x + 2 y = 0 } \end{array} \right.
x, y માટે ઉકેલો
x=10
y=-\frac{1}{2}=-0.5
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
2x+8y=16,-x+2y+11=0
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+8y=16
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-8y+16
સમીકરણની બન્ને બાજુથી 8y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-8y+16\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-4y+8
-8y+16 ને \frac{1}{2} વાર ગુણાકાર કરો.
-\left(-4y+8\right)+2y+11=0
અન્ય સમીકરણ, -x+2y+11=0 માં x માટે -4y+8 નો પ્રતિસ્થાપન કરો.
4y-8+2y+11=0
-4y+8 ને -1 વાર ગુણાકાર કરો.
6y-8+11=0
2y માં 4y ઍડ કરો.
6y+3=0
11 માં -8 ઍડ કરો.
6y=-3
સમીકરણની બન્ને બાજુથી 3 નો ઘટાડો કરો.
y=-\frac{1}{2}
બન્ને બાજુનો 6 થી ભાગાકાર કરો.
x=-4\left(-\frac{1}{2}\right)+8
x=-4y+8માં y માટે -\frac{1}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=2+8
-\frac{1}{2} ને -4 વાર ગુણાકાર કરો.
x=10
2 માં 8 ઍડ કરો.
x=10,y=-\frac{1}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+8y=16,-x+2y+11=0
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&8\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\-11\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}2&8\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
\left(\begin{matrix}2&8\\-1&2\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&8\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-11\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-8\left(-1\right)}&-\frac{8}{2\times 2-8\left(-1\right)}\\-\frac{-1}{2\times 2-8\left(-1\right)}&\frac{2}{2\times 2-8\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}16\\-11\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{2}{3}\\\frac{1}{12}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}16\\-11\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 16-\frac{2}{3}\left(-11\right)\\\frac{1}{12}\times 16+\frac{1}{6}\left(-11\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-\frac{1}{2}\end{matrix}\right)
અંકગણિતીય કરો.
x=10,y=-\frac{1}{2}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+8y=16,-x+2y+11=0
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-2x-8y=-16,2\left(-1\right)x+2\times 2y+2\times 11=0
2x અને -x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 2 સાથે ગુણાકાર કરો.
-2x-8y=-16,-2x+4y+22=0
સરળ બનાવો.
-2x+2x-8y-4y-22=-16
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -2x-8y=-16માંથી -2x+4y+22=0 ને ઘટાડો.
-8y-4y-22=-16
2x માં -2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -2x અને 2x ને વિભાજિત કરો.
-12y-22=-16
-4y માં -8y ઍડ કરો.
-12y=6
સમીકરણની બન્ને બાજુ 22 ઍડ કરો.
y=-\frac{1}{2}
બન્ને બાજુનો -12 થી ભાગાકાર કરો.
-x+2\left(-\frac{1}{2}\right)+11=0
-x+2y+11=0માં y માટે -\frac{1}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-x-1+11=0
-\frac{1}{2} ને 2 વાર ગુણાકાર કરો.
-x+10=0
11 માં -1 ઍડ કરો.
-x=-10
સમીકરણની બન્ને બાજુથી 10 નો ઘટાડો કરો.
x=10
બન્ને બાજુનો -1 થી ભાગાકાર કરો.
x=10,y=-\frac{1}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}