મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

2x+4y=1,2x-6y=-4
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
2x+4y=1
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
2x=-4y+1
સમીકરણની બન્ને બાજુથી 4y નો ઘટાડો કરો.
x=\frac{1}{2}\left(-4y+1\right)
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-2y+\frac{1}{2}
-4y+1 ને \frac{1}{2} વાર ગુણાકાર કરો.
2\left(-2y+\frac{1}{2}\right)-6y=-4
અન્ય સમીકરણ, 2x-6y=-4 માં x માટે -2y+\frac{1}{2} નો પ્રતિસ્થાપન કરો.
-4y+1-6y=-4
-2y+\frac{1}{2} ને 2 વાર ગુણાકાર કરો.
-10y+1=-4
-6y માં -4y ઍડ કરો.
-10y=-5
સમીકરણની બન્ને બાજુથી 1 નો ઘટાડો કરો.
y=\frac{1}{2}
બન્ને બાજુનો -10 થી ભાગાકાર કરો.
x=-2\times \frac{1}{2}+\frac{1}{2}
x=-2y+\frac{1}{2}માં y માટે \frac{1}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-1+\frac{1}{2}
\frac{1}{2} ને -2 વાર ગુણાકાર કરો.
x=-\frac{1}{2}
-1 માં \frac{1}{2} ઍડ કરો.
x=-\frac{1}{2},y=\frac{1}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
2x+4y=1,2x-6y=-4
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}2&4\\2&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}2&4\\2&-6\end{matrix}\right))\left(\begin{matrix}2&4\\2&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&-6\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
\left(\begin{matrix}2&4\\2&-6\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&-6\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&-6\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{2\left(-6\right)-4\times 2}&-\frac{4}{2\left(-6\right)-4\times 2}\\-\frac{2}{2\left(-6\right)-4\times 2}&\frac{2}{2\left(-6\right)-4\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{5}\\\frac{1}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}+\frac{1}{5}\left(-4\right)\\\frac{1}{10}-\frac{1}{10}\left(-4\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\\frac{1}{2}\end{matrix}\right)
અંકગણિતીય કરો.
x=-\frac{1}{2},y=\frac{1}{2}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
2x+4y=1,2x-6y=-4
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
2x-2x+4y+6y=1+4
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 2x+4y=1માંથી 2x-6y=-4 ને ઘટાડો.
4y+6y=1+4
-2x માં 2x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 2x અને -2x ને વિભાજિત કરો.
10y=1+4
6y માં 4y ઍડ કરો.
10y=5
4 માં 1 ઍડ કરો.
y=\frac{1}{2}
બન્ને બાજુનો 10 થી ભાગાકાર કરો.
2x-6\times \frac{1}{2}=-4
2x-6y=-4માં y માટે \frac{1}{2} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
2x-3=-4
\frac{1}{2} ને -6 વાર ગુણાકાર કરો.
2x=-1
સમીકરણની બન્ને બાજુ 3 ઍડ કરો.
x=-\frac{1}{2}
બન્ને બાજુનો 2 થી ભાગાકાર કરો.
x=-\frac{1}{2},y=\frac{1}{2}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.