મુખ્ય સમાવિષ્ટ પર જાવ
a, b માટે ઉકેલો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-1+a+b=0
પ્રથમ સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
a+b=1
બંને સાઇડ્સ માટે 1 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
-9+3a+b=0
બીજા સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
3a+b=9
બંને સાઇડ્સ માટે 9 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
a+b=1,3a+b=9
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
a+b=1
એક સમીકરણની પસંદગી કરો અને તેને a ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને a માટે ઉકેલો.
a=-b+1
સમીકરણની બન્ને બાજુથી b નો ઘટાડો કરો.
3\left(-b+1\right)+b=9
અન્ય સમીકરણ, 3a+b=9 માં a માટે -b+1 નો પ્રતિસ્થાપન કરો.
-3b+3+b=9
-b+1 ને 3 વાર ગુણાકાર કરો.
-2b+3=9
b માં -3b ઍડ કરો.
-2b=6
સમીકરણની બન્ને બાજુથી 3 નો ઘટાડો કરો.
b=-3
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
a=-\left(-3\right)+1
a=-b+1માં b માટે -3 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું a માટે ઉકેલો.
a=3+1
-3 ને -1 વાર ગુણાકાર કરો.
a=4
3 માં 1 ઍડ કરો.
a=4,b=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-1+a+b=0
પ્રથમ સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
a+b=1
બંને સાઇડ્સ માટે 1 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
-9+3a+b=0
બીજા સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
3a+b=9
બંને સાઇડ્સ માટે 9 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
a+b=1,3a+b=9
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\9\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
\left(\begin{matrix}1&1\\3&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{1}{1-3}\\-\frac{3}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}+\frac{1}{2}\times 9\\\frac{3}{2}-\frac{1}{2}\times 9\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
અંકગણિતીય કરો.
a=4,b=-3
મેટ્રિક્સ ઘટકો a અને b ને કાઢો.
-1+a+b=0
પ્રથમ સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
a+b=1
બંને સાઇડ્સ માટે 1 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
-9+3a+b=0
બીજા સમીકરણનો વિચાર કરો. બાજુઓને સ્વેપ કરો જેથી બધા ચલ પદો ડાબા હાથ બાજુએ હોય.
3a+b=9
બંને સાઇડ્સ માટે 9 ઍડ કરો. કંઈપણ વત્તા શૂન્ય સ્વયંને આપે છે.
a+b=1,3a+b=9
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
a-3a+b-b=1-9
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી a+b=1માંથી 3a+b=9 ને ઘટાડો.
a-3a=1-9
-b માં b ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો b અને -b ને વિભાજિત કરો.
-2a=1-9
-3a માં a ઍડ કરો.
-2a=-8
-9 માં 1 ઍડ કરો.
a=4
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
3\times 4+b=9
3a+b=9માં a માટે 4 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું b માટે ઉકેલો.
12+b=9
4 ને 3 વાર ગુણાકાર કરો.
b=-3
સમીકરણની બન્ને બાજુથી 12 નો ઘટાડો કરો.
a=4,b=-3
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.