મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

-2x+3y=9,7x-9y=-31
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
-2x+3y=9
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
-2x=-3y+9
સમીકરણની બન્ને બાજુથી 3y નો ઘટાડો કરો.
x=-\frac{1}{2}\left(-3y+9\right)
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
x=\frac{3}{2}y-\frac{9}{2}
-3y+9 ને -\frac{1}{2} વાર ગુણાકાર કરો.
7\left(\frac{3}{2}y-\frac{9}{2}\right)-9y=-31
અન્ય સમીકરણ, 7x-9y=-31 માં x માટે \frac{-9+3y}{2} નો પ્રતિસ્થાપન કરો.
\frac{21}{2}y-\frac{63}{2}-9y=-31
\frac{-9+3y}{2} ને 7 વાર ગુણાકાર કરો.
\frac{3}{2}y-\frac{63}{2}=-31
-9y માં \frac{21y}{2} ઍડ કરો.
\frac{3}{2}y=\frac{1}{2}
સમીકરણની બન્ને બાજુ \frac{63}{2} ઍડ કરો.
y=\frac{1}{3}
સમીકરણની બન્ને બાજુનો \frac{3}{2} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{3}{2}\times \frac{1}{3}-\frac{9}{2}
x=\frac{3}{2}y-\frac{9}{2}માં y માટે \frac{1}{3} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=\frac{1-9}{2}
ગુણક વખતનો ગુણક અને ભાજક વખતનો ભાજક દ્વારા ગુણાકાર કરીને \frac{3}{2} નો \frac{1}{3} વાર ગુણાકાર કરો. પછી જો શક્ય હોય તો અપૂર્ણાંકને ન્યૂનતમ પદો પર ઘટાડો.
x=-4
સામાન્ય ભાજક શોધી અને ગુણકોને ઍડ કરીને \frac{1}{2} માં -\frac{9}{2} ઍડ કરો. તે પછી અપૂર્ણાંકને જો સંભાવિત હોય તો ન્યૂનતમ પદો પર ઘટાડો.
x=-4,y=\frac{1}{3}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
-2x+3y=9,7x-9y=-31
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-31\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}9\\-31\end{matrix}\right)
\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}9\\-31\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}9\\-31\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-2\left(-9\right)-3\times 7}&-\frac{3}{-2\left(-9\right)-3\times 7}\\-\frac{7}{-2\left(-9\right)-3\times 7}&-\frac{2}{-2\left(-9\right)-3\times 7}\end{matrix}\right)\left(\begin{matrix}9\\-31\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&1\\\frac{7}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}9\\-31\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 9-31\\\frac{7}{3}\times 9+\frac{2}{3}\left(-31\right)\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\\frac{1}{3}\end{matrix}\right)
અંકગણિતીય કરો.
x=-4,y=\frac{1}{3}
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
-2x+3y=9,7x-9y=-31
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
7\left(-2\right)x+7\times 3y=7\times 9,-2\times 7x-2\left(-9\right)y=-2\left(-31\right)
-2x અને 7x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 7 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો -2 સાથે ગુણાકાર કરો.
-14x+21y=63,-14x+18y=62
સરળ બનાવો.
-14x+14x+21y-18y=63-62
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -14x+21y=63માંથી -14x+18y=62 ને ઘટાડો.
21y-18y=63-62
14x માં -14x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -14x અને 14x ને વિભાજિત કરો.
3y=63-62
-18y માં 21y ઍડ કરો.
3y=1
-62 માં 63 ઍડ કરો.
y=\frac{1}{3}
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
7x-9\times \frac{1}{3}=-31
7x-9y=-31માં y માટે \frac{1}{3} ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
7x-3=-31
\frac{1}{3} ને -9 વાર ગુણાકાર કરો.
7x=-28
સમીકરણની બન્ને બાજુ 3 ઍડ કરો.
x=-4
બન્ને બાજુનો 7 થી ભાગાકાર કરો.
x=-4,y=\frac{1}{3}
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.