\left\{ \begin{array} { l } { \frac { x } { 2 } + \frac { y } { 3 } = \frac { 13 } { 2 } } \\ { \frac { x } { 3 } - \frac { y } { 4 } = \frac { 3 } { 2 } } \end{array} \right.
x, y માટે ઉકેલો
x=9
y=6
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
3x+2y=39
પ્રથમ સમીકરણનો વિચાર કરો. સમીકરણની બન્ને બાજુઓનો 6 દ્વારા ગુણાકાર કરો, 2,3 ના સૌથી ઓછા સામાન્ય ભાજક.
4x-3y=18
બીજા સમીકરણનો વિચાર કરો. સમીકરણની બન્ને બાજુઓનો 12 દ્વારા ગુણાકાર કરો, 3,4,2 ના સૌથી ઓછા સામાન્ય ભાજક.
3x+2y=39,4x-3y=18
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
3x+2y=39
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
3x=-2y+39
સમીકરણની બન્ને બાજુથી 2y નો ઘટાડો કરો.
x=\frac{1}{3}\left(-2y+39\right)
બન્ને બાજુનો 3 થી ભાગાકાર કરો.
x=-\frac{2}{3}y+13
-2y+39 ને \frac{1}{3} વાર ગુણાકાર કરો.
4\left(-\frac{2}{3}y+13\right)-3y=18
અન્ય સમીકરણ, 4x-3y=18 માં x માટે -\frac{2y}{3}+13 નો પ્રતિસ્થાપન કરો.
-\frac{8}{3}y+52-3y=18
-\frac{2y}{3}+13 ને 4 વાર ગુણાકાર કરો.
-\frac{17}{3}y+52=18
-3y માં -\frac{8y}{3} ઍડ કરો.
-\frac{17}{3}y=-34
સમીકરણની બન્ને બાજુથી 52 નો ઘટાડો કરો.
y=6
સમીકરણની બન્ને બાજુનો -\frac{17}{3} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=-\frac{2}{3}\times 6+13
x=-\frac{2}{3}y+13માં y માટે 6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-4+13
6 ને -\frac{2}{3} વાર ગુણાકાર કરો.
x=9
-4 માં 13 ઍડ કરો.
x=9,y=6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
3x+2y=39
પ્રથમ સમીકરણનો વિચાર કરો. સમીકરણની બન્ને બાજુઓનો 6 દ્વારા ગુણાકાર કરો, 2,3 ના સૌથી ઓછા સામાન્ય ભાજક.
4x-3y=18
બીજા સમીકરણનો વિચાર કરો. સમીકરણની બન્ને બાજુઓનો 12 દ્વારા ગુણાકાર કરો, 3,4,2 ના સૌથી ઓછા સામાન્ય ભાજક.
3x+2y=39,4x-3y=18
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}3&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}39\\18\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}3&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}39\\18\end{matrix}\right)
\left(\begin{matrix}3&2\\4&-3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}39\\18\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}39\\18\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-2\times 4}&-\frac{2}{3\left(-3\right)-2\times 4}\\-\frac{4}{3\left(-3\right)-2\times 4}&\frac{3}{3\left(-3\right)-2\times 4}\end{matrix}\right)\left(\begin{matrix}39\\18\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{2}{17}\\\frac{4}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}39\\18\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 39+\frac{2}{17}\times 18\\\frac{4}{17}\times 39-\frac{3}{17}\times 18\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\6\end{matrix}\right)
અંકગણિતીય કરો.
x=9,y=6
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
3x+2y=39
પ્રથમ સમીકરણનો વિચાર કરો. સમીકરણની બન્ને બાજુઓનો 6 દ્વારા ગુણાકાર કરો, 2,3 ના સૌથી ઓછા સામાન્ય ભાજક.
4x-3y=18
બીજા સમીકરણનો વિચાર કરો. સમીકરણની બન્ને બાજુઓનો 12 દ્વારા ગુણાકાર કરો, 3,4,2 ના સૌથી ઓછા સામાન્ય ભાજક.
3x+2y=39,4x-3y=18
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
4\times 3x+4\times 2y=4\times 39,3\times 4x+3\left(-3\right)y=3\times 18
3x અને 4x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 4 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 3 સાથે ગુણાકાર કરો.
12x+8y=156,12x-9y=54
સરળ બનાવો.
12x-12x+8y+9y=156-54
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 12x+8y=156માંથી 12x-9y=54 ને ઘટાડો.
8y+9y=156-54
-12x માં 12x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 12x અને -12x ને વિભાજિત કરો.
17y=156-54
9y માં 8y ઍડ કરો.
17y=102
-54 માં 156 ઍડ કરો.
y=6
બન્ને બાજુનો 17 થી ભાગાકાર કરો.
4x-3\times 6=18
4x-3y=18માં y માટે 6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
4x-18=18
6 ને -3 વાર ગુણાકાર કરો.
4x=36
સમીકરણની બન્ને બાજુ 18 ઍડ કરો.
x=9
બન્ને બાજુનો 4 થી ભાગાકાર કરો.
x=9,y=6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}