મુખ્ય સમાવિષ્ટ પર જાવ
x, y માટે ઉકેલો
Tick mark Image
ગ્રાફ

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

5x-y=5,-2x+3y=11
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
5x-y=5
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
5x=y+5
સમીકરણની બન્ને બાજુ y ઍડ કરો.
x=\frac{1}{5}\left(y+5\right)
બન્ને બાજુનો 5 થી ભાગાકાર કરો.
x=\frac{1}{5}y+1
y+5 ને \frac{1}{5} વાર ગુણાકાર કરો.
-2\left(\frac{1}{5}y+1\right)+3y=11
અન્ય સમીકરણ, -2x+3y=11 માં x માટે \frac{y}{5}+1 નો પ્રતિસ્થાપન કરો.
-\frac{2}{5}y-2+3y=11
\frac{y}{5}+1 ને -2 વાર ગુણાકાર કરો.
\frac{13}{5}y-2=11
3y માં -\frac{2y}{5} ઍડ કરો.
\frac{13}{5}y=13
સમીકરણની બન્ને બાજુ 2 ઍડ કરો.
y=5
સમીકરણની બન્ને બાજુનો \frac{13}{5} થી ભાગાકાર કરો, જે બન્ને બાજુને અપૂર્ણાંકના વ્યુત્ક્રમ સાથે ગુણાકાર કરવાના સમાન છે.
x=\frac{1}{5}\times 5+1
x=\frac{1}{5}y+1માં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=1+1
5 ને \frac{1}{5} વાર ગુણાકાર કરો.
x=2
1 માં 1 ઍડ કરો.
x=2,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
5x-y=5,-2x+3y=11
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\11\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5\\11\end{matrix}\right)
\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5\\11\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5\\11\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-\left(-2\right)\right)}&-\frac{-1}{5\times 3-\left(-\left(-2\right)\right)}\\-\frac{-2}{5\times 3-\left(-\left(-2\right)\right)}&\frac{5}{5\times 3-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\11\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&\frac{1}{13}\\\frac{2}{13}&\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}5\\11\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times 5+\frac{1}{13}\times 11\\\frac{2}{13}\times 5+\frac{5}{13}\times 11\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
અંકગણિતીય કરો.
x=2,y=5
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
5x-y=5,-2x+3y=11
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
-2\times 5x-2\left(-1\right)y=-2\times 5,5\left(-2\right)x+5\times 3y=5\times 11
5x અને -2x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો -2 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 5 સાથે ગુણાકાર કરો.
-10x+2y=-10,-10x+15y=55
સરળ બનાવો.
-10x+10x+2y-15y=-10-55
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી -10x+2y=-10માંથી -10x+15y=55 ને ઘટાડો.
2y-15y=-10-55
10x માં -10x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો -10x અને 10x ને વિભાજિત કરો.
-13y=-10-55
-15y માં 2y ઍડ કરો.
-13y=-65
-55 માં -10 ઍડ કરો.
y=5
બન્ને બાજુનો -13 થી ભાગાકાર કરો.
-2x+3\times 5=11
-2x+3y=11માં y માટે 5 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
-2x+15=11
5 ને 3 વાર ગુણાકાર કરો.
-2x=-4
સમીકરણની બન્ને બાજુથી 15 નો ઘટાડો કરો.
x=2
બન્ને બાજુનો -2 થી ભાગાકાર કરો.
x=2,y=5
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.