\left\{ \begin{array} { c } { 300 x + 200 y = 2400 } \\ { x + y = 10 } \end{array} \right.
x, y માટે ઉકેલો
x=4
y=6
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
300x+200y=2400,x+y=10
પ્રતિસ્થાપનનો ઉપયોગ કરીને સમીકરણની જોડીને ઉકેલવા માટે, પહેલા બેમાંથી એક ચલ માટે એક સમીકરણને ઉકેલો. પછી પરીણામને તે ચલ માટે અન્ય સમીકરણમાં પ્રતિસ્થાપન કરો.
300x+200y=2400
એક સમીકરણની પસંદગી કરો અને તેને x ને બરાબર ચિહ્નના ડાબા હાથ બાજુએ આઇસોલેટ કરીને x માટે ઉકેલો.
300x=-200y+2400
સમીકરણની બન્ને બાજુથી 200y નો ઘટાડો કરો.
x=\frac{1}{300}\left(-200y+2400\right)
બન્ને બાજુનો 300 થી ભાગાકાર કરો.
x=-\frac{2}{3}y+8
-200y+2400 ને \frac{1}{300} વાર ગુણાકાર કરો.
-\frac{2}{3}y+8+y=10
અન્ય સમીકરણ, x+y=10 માં x માટે -\frac{2y}{3}+8 નો પ્રતિસ્થાપન કરો.
\frac{1}{3}y+8=10
y માં -\frac{2y}{3} ઍડ કરો.
\frac{1}{3}y=2
સમીકરણની બન્ને બાજુથી 8 નો ઘટાડો કરો.
y=6
બન્ને બાજુનો 3 દ્વારા ગુણાકાર કરો.
x=-\frac{2}{3}\times 6+8
x=-\frac{2}{3}y+8માં y માટે 6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=-4+8
6 ને -\frac{2}{3} વાર ગુણાકાર કરો.
x=4
-4 માં 8 ઍડ કરો.
x=4,y=6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
300x+200y=2400,x+y=10
સમીકરણને માનક પ્રપત્રમાં મૂકો અને પછી સમીકરણના સિસ્ટમને ઉકેલવા માટે મેટ્રિક્સનો ઉપયોગ કરો.
\left(\begin{matrix}300&200\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2400\\10\end{matrix}\right)
સમીકરણને મેટ્રિક્સના પ્રપત્રમાં લખો.
inverse(\left(\begin{matrix}300&200\\1&1\end{matrix}\right))\left(\begin{matrix}300&200\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}300&200\\1&1\end{matrix}\right))\left(\begin{matrix}2400\\10\end{matrix}\right)
\left(\begin{matrix}300&200\\1&1\end{matrix}\right) ના વ્યુત્ક્રમ મેટ્રિક્સ દ્વારા સમીકરણનો ડાબે ગુણાકાર કરો.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}300&200\\1&1\end{matrix}\right))\left(\begin{matrix}2400\\10\end{matrix}\right)
મેટ્રિક્સ અને તેના વ્યુત્ક્રમનું ગુણનફળ એ ઓળખ મેટ્રિક્સ છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}300&200\\1&1\end{matrix}\right))\left(\begin{matrix}2400\\10\end{matrix}\right)
બરાબરની નિશાનીના ડાબા હાથ બાજુ પર મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{300-200}&-\frac{200}{300-200}\\-\frac{1}{300-200}&\frac{300}{300-200}\end{matrix}\right)\left(\begin{matrix}2400\\10\end{matrix}\right)
2\times 2 ના મેટ્રિક્સ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) માટે, વિપરીત મેટ્રિક્સ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) છે, એટલે મેટ્રિક્સ સમીકરણને મેટ્રિક્સ ગુણાકાર સમસ્યા તરીકે ફરીથી લખી શકાય છે.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{100}&-2\\-\frac{1}{100}&3\end{matrix}\right)\left(\begin{matrix}2400\\10\end{matrix}\right)
અંકગણિતીય કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{100}\times 2400-2\times 10\\-\frac{1}{100}\times 2400+3\times 10\end{matrix}\right)
મેટ્રિક્સનો ગુણાકાર કરો.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\6\end{matrix}\right)
અંકગણિતીય કરો.
x=4,y=6
મેટ્રિક્સ ઘટકો x અને y ને કાઢો.
300x+200y=2400,x+y=10
બકાત કરવાથી ઉકેલવા માટે, બન્ને સમીકરણમાં બેમાંથી એક ચલના ગુણાંકો સમાન હોવા જોઈએ જેથી જ્યારે એક સમીકરણમાંથી અન્યનો ઘટાડો કરાય ત્યારે ચલ વિભાજિત થઈ જાય.
300x+200y=2400,300x+300y=300\times 10
300x અને x ને સમાન બનાવવા માટે, પ્રથમ સમીકરણની પ્રત્યેક બાજુના બધા પદોનો 1 સાથે ગુણાકાર કરો અને બીજાના પ્રત્યેક પદોનો 300 સાથે ગુણાકાર કરો.
300x+200y=2400,300x+300y=3000
સરળ બનાવો.
300x-300x+200y-300y=2400-3000
બરાબર ચિહ્નની પ્રત્યેક બાજુ સરખા પદોને ઘટાડવાથી 300x+200y=2400માંથી 300x+300y=3000 ને ઘટાડો.
200y-300y=2400-3000
-300x માં 300x ઍડ કરો. માત્ર એક જ ચલવાળા સમીકરણ કે જેને ઉકેલી શકાય છે તેને છોડીને, નિયમો 300x અને -300x ને વિભાજિત કરો.
-100y=2400-3000
-300y માં 200y ઍડ કરો.
-100y=-600
-3000 માં 2400 ઍડ કરો.
y=6
બન્ને બાજુનો -100 થી ભાગાકાર કરો.
x+6=10
x+y=10માં y માટે 6 ને પ્રતિસ્થાપિત કરો. કારણ કે પરિણામી સમીકરણમાં માત્ર એક ચલનો સમાવેશ થાય છે, તમે એને સીધું x માટે ઉકેલો.
x=4
સમીકરણની બન્ને બાજુથી 6 નો ઘટાડો કરો.
x=4,y=6
સિસ્ટમ હવે ઉકેલાઈ ગઈ છે.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}