મૂલ્યાંકન કરો
\frac{10970799276608}{15}\approx 731386618440.533333333
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\int _{122}^{328}\left(2-\left(x^{2}-4x+4\right)\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
\left(x-2\right)^{2} ને વિસ્તૃત કરવા માટે દ્વિપદી પ્રમેય \left(a-b\right)^{2}=a^{2}-2ab+b^{2} નો ઉપયોગ કરો.
\int _{122}^{328}\left(2-x^{2}+4x-4\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
x^{2}-4x+4 નો વિરૂદ્ધ શોધવા માટે, પ્રત્યેક શબ્દનો વિરુદ્ધ શબ્દ શોધો.
\int _{122}^{328}\left(-2-x^{2}+4x\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
-2 મેળવવા માટે 2 માંથી 4 ને ઘટાડો.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\times 5\right)^{2}\mathrm{d}x
વર્ગ -2-x^{2}+4x.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\right)^{2}\mathrm{d}x
0 મેળવવા માટે 0 સાથે 5 નો ગુણાકાર કરો.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-2^{2}\mathrm{d}x
2 મેળવવા માટે 2 માંથી 0 ને ઘટાડો.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-4\mathrm{d}x
2 ના 2 ની ગણના કરો અને 4 મેળવો.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
0 મેળવવા માટે 4 માંથી 4 ને ઘટાડો.
\int x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
પહેલાં નિશ્ચિત પૂર્ણાંકનુ મૂલ્યાંકન કરો.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 20x^{2}\mathrm{d}x+\int -16x\mathrm{d}x
રકમનું પદદીઠ સંકલન કરો.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
દરેક પદમાં અચલના ગુણક બનાવો.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x^{4}\mathrm{d}x ને \frac{x^{5}}{5} વડે બદલો.
\frac{x^{5}}{5}-2x^{4}+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x^{3}\mathrm{d}x ને \frac{x^{4}}{4} વડે બદલો. \frac{x^{4}}{4} ને -8 વાર ગુણાકાર કરો.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-16\int x\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x^{2}\mathrm{d}x ને \frac{x^{3}}{3} વડે બદલો. \frac{x^{3}}{3} ને 20 વાર ગુણાકાર કરો.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-8x^{2}
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x\mathrm{d}x ને \frac{x^{2}}{2} વડે બદલો. \frac{x^{2}}{2} ને -16 વાર ગુણાકાર કરો.
\frac{328^{5}}{5}-2\times 328^{4}+\frac{20}{3}\times 328^{3}-8\times 328^{2}-\left(\frac{122^{5}}{5}-2\times 122^{4}+\frac{20}{3}\times 122^{3}-8\times 122^{2}\right)
નિશ્ચિત પૂર્ણાંક એ સંકલનની ઉપરી મર્યાદા પર મૂલ્યાંકન કરેલ પદાવલિનાં પ્રતિવ્યુત્પન્ન ઓછા સંકલનની નીચલી મર્યાદા પર મૂલ્યાંકન કરેલ પ્રતિવ્યુત્પન્ન છે.
\frac{10970799276608}{15}
સરળ બનાવો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}