મૂલ્યાંકન કરો
-\frac{567}{4}=-141.75
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\int 5-x+2x^{2}-3x^{3}\mathrm{d}x
પહેલાં નિશ્ચિત પૂર્ણાંકનુ મૂલ્યાંકન કરો.
\int 5\mathrm{d}x+\int -x\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x
રકમનું પદદીઠ સંકલન કરો.
\int 5\mathrm{d}x-\int x\mathrm{d}x+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
દરેક પદમાં અચલના ગુણક બનાવો.
5x-\int x\mathrm{d}x+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
સામાન્ય પૂર્ણાંકોના નિયમ \int a\mathrm{d}x=ax ના કોષ્ટકનો ઉપયોગ કરીને 5 નો પૂર્ણાંક શોધો.
5x-\frac{x^{2}}{2}+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x\mathrm{d}x ને \frac{x^{2}}{2} વડે બદલો. \frac{x^{2}}{2} ને -1 વાર ગુણાકાર કરો.
5x-\frac{x^{2}}{2}+\frac{2x^{3}}{3}-3\int x^{3}\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x^{2}\mathrm{d}x ને \frac{x^{3}}{3} વડે બદલો. \frac{x^{3}}{3} ને 2 વાર ગુણાકાર કરો.
5x-\frac{x^{2}}{2}+\frac{2x^{3}}{3}-\frac{3x^{4}}{4}
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x^{3}\mathrm{d}x ને \frac{x^{4}}{4} વડે બદલો. \frac{x^{4}}{4} ને -3 વાર ગુણાકાર કરો.
5\times 4-\frac{4^{2}}{2}+\frac{2}{3}\times 4^{3}-\frac{3}{4}\times 4^{4}-\left(5\times 1-\frac{1^{2}}{2}+\frac{2}{3}\times 1^{3}-\frac{3}{4}\times 1^{4}\right)
નિશ્ચિત પૂર્ણાંક એ સંકલનની ઉપરી મર્યાદા પર મૂલ્યાંકન કરેલ પદાવલિનાં પ્રતિવ્યુત્પન્ન ઓછા સંકલનની નીચલી મર્યાદા પર મૂલ્યાંકન કરેલ પ્રતિવ્યુત્પન્ન છે.
-\frac{567}{4}
સરળ બનાવો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}