મૂલ્યાંકન કરો
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x+С
w.r.t.x ભેદ પાડો
\left(3x+7\right)\left(x^{2}+4x+2\right)
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\int -3\left(-x^{2}\right)x-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
-x^{2}-4x-2 નો -3x-7 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\int 3x^{2}x-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
3 મેળવવા માટે -3 સાથે -1 નો ગુણાકાર કરો.
\int 3x^{3}-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
સમાન આધારના ઘાતોનો ગુણાકાર કરવા માટે, તેમના ઘાતાંકો ઍડ કરો. 3 મેળવવા માટે 2 અને 1 ઍડ કરો.
\int 3x^{3}+7x^{2}+12x^{2}+34x+14\mathrm{d}x
7 મેળવવા માટે -7 સાથે -1 નો ગુણાકાર કરો.
\int 3x^{3}+19x^{2}+34x+14\mathrm{d}x
19x^{2} ને મેળવવા માટે 7x^{2} અને 12x^{2} ને એકસાથે કરો.
\int 3x^{3}\mathrm{d}x+\int 19x^{2}\mathrm{d}x+\int 34x\mathrm{d}x+\int 14\mathrm{d}x
રકમનું પદદીઠ સંકલન કરો.
3\int x^{3}\mathrm{d}x+19\int x^{2}\mathrm{d}x+34\int x\mathrm{d}x+\int 14\mathrm{d}x
દરેક પદમાં અચલના ગુણક બનાવો.
\frac{3x^{4}}{4}+19\int x^{2}\mathrm{d}x+34\int x\mathrm{d}x+\int 14\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x^{3}\mathrm{d}x ને \frac{x^{4}}{4} વડે બદલો. \frac{x^{4}}{4} ને 3 વાર ગુણાકાર કરો.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+34\int x\mathrm{d}x+\int 14\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x^{2}\mathrm{d}x ને \frac{x^{3}}{3} વડે બદલો. \frac{x^{3}}{3} ને 19 વાર ગુણાકાર કરો.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+\int 14\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x\mathrm{d}x ને \frac{x^{2}}{2} વડે બદલો. \frac{x^{2}}{2} ને 34 વાર ગુણાકાર કરો.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x
સામાન્ય પૂર્ણાંકોના નિયમ \int a\mathrm{d}x=ax ના કોષ્ટકનો ઉપયોગ કરીને 14 નો પૂર્ણાંક શોધો.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x+С
જો F\left(x\right) એ f\left(x\right) નો પ્રતિવ્યુત્પન્ન હોય, તો f\left(x\right) ના તમામ પ્રતિવ્યુત્પન્નનો ગણ F\left(x\right)+C વડે દર્શાવવામાં આવે છે. આથી, પરિણામમાં સંકલન C\in \mathrm{R} નો અચલ ઍડ કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}