મુખ્ય સમાવિષ્ટ પર જાવ
મૂલ્યાંકન કરો
Tick mark Image
w.r.t.x ભેદ પાડો
Tick mark Image

વેબ શોધમાંથી સમાન પ્રશ્નો

શેર કરો

\int -3\left(-x^{2}\right)x-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
-x^{2}-4x-2 નો -3x-7 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
\int 3x^{2}x-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
3 મેળવવા માટે -3 સાથે -1 નો ગુણાકાર કરો.
\int 3x^{3}-7\left(-x^{2}\right)+12x^{2}+34x+14\mathrm{d}x
સમાન આધારના ઘાતોનો ગુણાકાર કરવા માટે, તેમના ઘાતાંકો ઍડ કરો. 3 મેળવવા માટે 2 અને 1 ઍડ કરો.
\int 3x^{3}+7x^{2}+12x^{2}+34x+14\mathrm{d}x
7 મેળવવા માટે -7 સાથે -1 નો ગુણાકાર કરો.
\int 3x^{3}+19x^{2}+34x+14\mathrm{d}x
19x^{2} ને મેળવવા માટે 7x^{2} અને 12x^{2} ને એકસાથે કરો.
\int 3x^{3}\mathrm{d}x+\int 19x^{2}\mathrm{d}x+\int 34x\mathrm{d}x+\int 14\mathrm{d}x
રકમનું પદદીઠ સંકલન કરો.
3\int x^{3}\mathrm{d}x+19\int x^{2}\mathrm{d}x+34\int x\mathrm{d}x+\int 14\mathrm{d}x
દરેક પદમાં અચલના ગુણક બનાવો.
\frac{3x^{4}}{4}+19\int x^{2}\mathrm{d}x+34\int x\mathrm{d}x+\int 14\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x^{3}\mathrm{d}x ને \frac{x^{4}}{4} વડે બદલો. \frac{x^{4}}{4} ને 3 વાર ગુણાકાર કરો.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+34\int x\mathrm{d}x+\int 14\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x^{2}\mathrm{d}x ને \frac{x^{3}}{3} વડે બદલો. \frac{x^{3}}{3} ને 19 વાર ગુણાકાર કરો.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+\int 14\mathrm{d}x
કારણકે \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} કારણકે k\neq -1, \int x\mathrm{d}x ને \frac{x^{2}}{2} વડે બદલો. \frac{x^{2}}{2} ને 34 વાર ગુણાકાર કરો.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x
સામાન્ય પૂર્ણાંકોના નિયમ \int a\mathrm{d}x=ax ના કોષ્ટકનો ઉપયોગ કરીને 14 નો પૂર્ણાંક શોધો.
\frac{3x^{4}}{4}+\frac{19x^{3}}{3}+17x^{2}+14x+С
જો F\left(x\right) એ f\left(x\right) નો પ્રતિવ્યુત્પન્ન હોય, તો f\left(x\right) ના તમામ પ્રતિવ્યુત્પન્નનો ગણ F\left(x\right)+C વડે દર્શાવવામાં આવે છે. આથી, પરિણામમાં સંકલન C\in \mathrm{R} નો અચલ ઍડ કરો.