x માટે ઉકેલો (જટિલ સમાધાન)
x=-5\sqrt{3}i-5\approx -5-8.660254038i
x=10
x=-5+5\sqrt{3}i\approx -5+8.660254038i
x માટે ઉકેલો
x=10
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
xx^{2}=10\times 100
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ 0 ની સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો 10x દ્વારા ગુણાકાર કરો, 10,x ના સૌથી ઓછા સામાન્ય ભાજક.
x^{3}=10\times 100
સમાન આધારના ઘાતોનો ગુણાકાર કરવા માટે, તેમના ઘાતાંકો ઍડ કરો. 3 મેળવવા માટે 1 અને 2 ઍડ કરો.
x^{3}=1000
1000 મેળવવા માટે 10 સાથે 100 નો ગુણાકાર કરો.
x^{3}-1000=0
બન્ને બાજુથી 1000 ઘટાડો.
±1000,±500,±250,±200,±125,±100,±50,±40,±25,±20,±10,±8,±5,±4,±2,±1
સંમેય વર્ગમૂળ પ્રમય દ્વારા, બહુપદીના બધા સંમેય વર્ગમૂળ સ્વરૂપ \frac{p}{q} માં છે, જ્યાં p, અચલ પદ -1000 ને વિભાજીત કરે છે અને q , અગ્રણી સહગુણક 1 ને વિભાજિત કરે છે. બધા ઉમેદવારોની સૂચિ \frac{p}{q}.
x=10
પૂર્ણ મૂલ્ય દ્વારા નાનાથી પ્રારંભ કરીને, પૂર્ણાંકનાં તમામ મૂલ્યોને અજમાવીને આવા એક વર્ગને શોધો. જો પૂર્ણાંક વર્ણ ન મળે તો અપૂર્ણાંકો અજમાવી જુઓ.
x^{2}+10x+100=0
અવયવ પ્રમેય દ્વારા, x-k એ દરેક વર્ગમૂળ k માટે બહુપદીનો અવયવ છે. x^{2}+10x+100 મેળવવા માટે x^{3}-1000 નો x-10 થી ભાગાકાર કરો. જ્યાં પરિણામ 0 સમાન હોય ત્યાં સમીકરણ ઉકેલો.
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 100}}{2}
ફોર્મના બધા સમીકરણો ax^{2}+bx+c=0 ને દ્વિઘાત સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરીને હલ કરી શકાય છે. દ્વિઘાત સૂત્રમાં a માટે 1, b માટે 10 અને c માટે 100 સબસ્ટિટ્યુટ છે.
x=\frac{-10±\sqrt{-300}}{2}
ગણતરી કરશો નહીં.
x=-5i\sqrt{3}-5 x=-5+5i\sqrt{3}
જ્યારે ± વત્તા અને ± ઓછા હોય સમીકરણ x^{2}+10x+100=0 ને ઉકેલો.
x=10 x=-5i\sqrt{3}-5 x=-5+5i\sqrt{3}
તમામ મળેલ ઉકેલોની સૂચી.
xx^{2}=10\times 100
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ x એ 0 ની સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો 10x દ્વારા ગુણાકાર કરો, 10,x ના સૌથી ઓછા સામાન્ય ભાજક.
x^{3}=10\times 100
સમાન આધારના ઘાતોનો ગુણાકાર કરવા માટે, તેમના ઘાતાંકો ઍડ કરો. 3 મેળવવા માટે 1 અને 2 ઍડ કરો.
x^{3}=1000
1000 મેળવવા માટે 10 સાથે 100 નો ગુણાકાર કરો.
x^{3}-1000=0
બન્ને બાજુથી 1000 ઘટાડો.
±1000,±500,±250,±200,±125,±100,±50,±40,±25,±20,±10,±8,±5,±4,±2,±1
સંમેય વર્ગમૂળ પ્રમય દ્વારા, બહુપદીના બધા સંમેય વર્ગમૂળ સ્વરૂપ \frac{p}{q} માં છે, જ્યાં p, અચલ પદ -1000 ને વિભાજીત કરે છે અને q , અગ્રણી સહગુણક 1 ને વિભાજિત કરે છે. બધા ઉમેદવારોની સૂચિ \frac{p}{q}.
x=10
પૂર્ણ મૂલ્ય દ્વારા નાનાથી પ્રારંભ કરીને, પૂર્ણાંકનાં તમામ મૂલ્યોને અજમાવીને આવા એક વર્ગને શોધો. જો પૂર્ણાંક વર્ણ ન મળે તો અપૂર્ણાંકો અજમાવી જુઓ.
x^{2}+10x+100=0
અવયવ પ્રમેય દ્વારા, x-k એ દરેક વર્ગમૂળ k માટે બહુપદીનો અવયવ છે. x^{2}+10x+100 મેળવવા માટે x^{3}-1000 નો x-10 થી ભાગાકાર કરો. જ્યાં પરિણામ 0 સમાન હોય ત્યાં સમીકરણ ઉકેલો.
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 100}}{2}
ફોર્મના બધા સમીકરણો ax^{2}+bx+c=0 ને દ્વિઘાત સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરીને હલ કરી શકાય છે. દ્વિઘાત સૂત્રમાં a માટે 1, b માટે 10 અને c માટે 100 સબસ્ટિટ્યુટ છે.
x=\frac{-10±\sqrt{-300}}{2}
ગણતરી કરશો નહીં.
x\in \emptyset
કારણ કે નકારાત્મક સંખ્યાનો વર્ગમૂળ વાસ્તવિક ક્ષેત્રમાં નિર્ધારિત કરેલ નથી, કોઈ ઉકેલો નથી.
x=10
તમામ મળેલ ઉકેલોની સૂચી.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}