મૂલ્યાંકન કરો
-\frac{x+4}{x^{2}+4x+1}
વિસ્તૃત કરો
-\frac{x+4}{x^{2}+4x+1}
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-1}{x}
\left(2+x\right)^{2}-3 નો અવયવ પાડો.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-\frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} ને 1 વાર ગુણાકાર કરો.
\frac{\frac{1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
કારણ કે \frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} અને \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{\frac{1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right) માં ગુણાકાર કરો.
\frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x માં સમાન પદોને સંયોજિત કરો.
\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)x}
\frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x} ને એકલ અપૂર્ણાંક તરીકે દર્શાવો.
\frac{x\left(-x-4\right)}{x\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
પદાવલિનો અવયવ કાઢો કે જેનો પહેલેથી અવયવ નથી.
\frac{-x-4}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
x ને બન્ને ગુણક અને ભાજકમાં વિભાજિત કરો.
\frac{-x-4}{x^{2}+4x+1}
પદાવલિને વિસ્તૃત કરો.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-1}{x}
\left(2+x\right)^{2}-3 નો અવયવ પાડો.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-\frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
પદાવલિઓને ઍડ કરવા અથવા તેની બાદબાકી કરવા, તેમના છેદોને સમાન કરવા માટે તેમને વિસ્તારિત કરો. \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} ને 1 વાર ગુણાકાર કરો.
\frac{\frac{1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
કારણ કે \frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} અને \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} પાસે એકસમાન છેદ છે, તેમને તેમના અંશને બાદ કર્યા દ્વારા બાદ કરો.
\frac{\frac{1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right) માં ગુણાકાર કરો.
\frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x માં સમાન પદોને સંયોજિત કરો.
\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)x}
\frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x} ને એકલ અપૂર્ણાંક તરીકે દર્શાવો.
\frac{x\left(-x-4\right)}{x\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
પદાવલિનો અવયવ કાઢો કે જેનો પહેલેથી અવયવ નથી.
\frac{-x-4}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
x ને બન્ને ગુણક અને ભાજકમાં વિભાજિત કરો.
\frac{-x-4}{x^{2}+4x+1}
પદાવલિને વિસ્તૃત કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}