j માટે ઉકેલો
j=-1
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\left(j+3\right)\left(j-8\right)=\left(j+10\right)\left(j-1\right)
શૂન્ય દ્વારા ભાગાકાર કરવું તે વ્યાખ્યાયિત ન હોવાથી, ચલ j એ -10,-3 મૂલ્યમાંના કોઈપણ સમાન હોઈ શકે નહીં. સમીકરણની બન્ને બાજુઓનો \left(j+3\right)\left(j+10\right) દ્વારા ગુણાકાર કરો, j+10,j+3 ના સૌથી ઓછા સામાન્ય ભાજક.
j^{2}-5j-24=\left(j+10\right)\left(j-1\right)
j+3 નો j-8 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
j^{2}-5j-24=j^{2}+9j-10
j+10 નો j-1 સાથે ગુણાકાર કરવા અને એકસમાન દર્શાવેલી કિંમતોને સંયોજિત કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
j^{2}-5j-24-j^{2}=9j-10
બન્ને બાજુથી j^{2} ઘટાડો.
-5j-24=9j-10
0 ને મેળવવા માટે j^{2} અને -j^{2} ને એકસાથે કરો.
-5j-24-9j=-10
બન્ને બાજુથી 9j ઘટાડો.
-14j-24=-10
-14j ને મેળવવા માટે -5j અને -9j ને એકસાથે કરો.
-14j=-10+24
બંને સાઇડ્સ માટે 24 ઍડ કરો.
-14j=14
14મેળવવા માટે -10 અને 24 ને ઍડ કરો.
j=\frac{14}{-14}
બન્ને બાજુનો -14 થી ભાગાકાર કરો.
j=-1
-1 મેળવવા માટે 14 નો -14 થી ભાગાકાર કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}