મૂલ્યાંકન કરો
-5\sqrt{6}\approx -12.247448714
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
\frac{9\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
\frac{9}{\sqrt{7}-2} ના અંશને \sqrt{7}+2 ના અંશ અને છેદની સાથે ગુણાકાર કરીને સંમેય કરો.
\frac{9\left(\sqrt{7}+2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9\left(\sqrt{7}+2\right)}{7-4}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
વર્ગ \sqrt{7}. વર્ગ 2.
\frac{9\left(\sqrt{7}+2\right)}{3}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
3 મેળવવા માટે 7 માંથી 4 ને ઘટાડો.
3\left(\sqrt{7}+2\right)-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
3\left(\sqrt{7}+2\right) મેળવવા માટે 9\left(\sqrt{7}+2\right) નો 3 થી ભાગાકાર કરો.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{5}{\sqrt{6}-\sqrt{7}}
\frac{4}{3+\sqrt{7}} ના અંશને 3-\sqrt{7} ના અંશ અને છેદની સાથે ગુણાકાર કરીને સંમેય કરો.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5}{\sqrt{6}-\sqrt{7}}
\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{9-7}+\frac{5}{\sqrt{6}-\sqrt{7}}
વર્ગ 3. વર્ગ \sqrt{7}.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{2}+\frac{5}{\sqrt{6}-\sqrt{7}}
2 મેળવવા માટે 9 માંથી 7 ને ઘટાડો.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5}{\sqrt{6}-\sqrt{7}}
2\left(3-\sqrt{7}\right) મેળવવા માટે 4\left(3-\sqrt{7}\right) નો 2 થી ભાગાકાર કરો.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right)}
\frac{5}{\sqrt{6}-\sqrt{7}} ના અંશને \sqrt{6}+\sqrt{7} ના અંશ અને છેદની સાથે ગુણાકાર કરીને સંમેય કરો.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{7}\right)^{2}}
\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right) ગણતરી કરો. આ નિયમનો ઉપયોગ કરીને ગુણાકારને વર્ગોના તફાવતમાં રૂપાંતરિત કરી શકાય છે: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{6-7}
વર્ગ \sqrt{6}. વર્ગ \sqrt{7}.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{-1}
-1 મેળવવા માટે 6 માંથી 7 ને ઘટાડો.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
1 દ્વારા વિભાજિત કંઈપણ તેનું વિરુદ્ધ આપે છે.
3\sqrt{7}+6-2\left(3-\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
3 સાથે \sqrt{7}+2 નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3\sqrt{7}+6-\left(6-2\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
2 સાથે 3-\sqrt{7} નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
3\sqrt{7}+6-6-\left(-2\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
6-2\sqrt{7} નો વિરૂદ્ધ શોધવા માટે, પ્રત્યેક શબ્દનો વિરુદ્ધ શબ્દ શોધો.
3\sqrt{7}+6-6+2\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
-2\sqrt{7} નો વિરોધી 2\sqrt{7} છે.
3\sqrt{7}+2\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
0 મેળવવા માટે 6 માંથી 6 ને ઘટાડો.
5\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
5\sqrt{7} ને મેળવવા માટે 3\sqrt{7} અને 2\sqrt{7} ને એકસાથે કરો.
5\sqrt{7}-5\sqrt{6}-5\sqrt{7}
-5 સાથે \sqrt{6}+\sqrt{7} નો ગુણાકાર કરવા માટે પ્રત્યેક ગુણધર્મનો ઉપયોગ કરો.
-5\sqrt{6}
0 ને મેળવવા માટે 5\sqrt{7} અને -5\sqrt{7} ને એકસાથે કરો.
ઉદાહરણો
દ્વિઘાત સમીકરણ
{ x } ^ { 2 } - 4 x - 5 = 0
ત્રિકોણમિતિ
4 \sin \theta \cos \theta = 2 \sin \theta
રેખીય સમીકરણ
y = 3x + 4
અંકગણિત
699 * 533
મેટ્રિક્સ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
યુગપત્ સમીકરણ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ડિફરેન્શિએશન
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ઇન્ટિગ્રેશન
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
લિમિટ્સ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}